Optimizing the Hyperparameter Tuning of YOLOv5 for Underwater Detection

This study optimized the latest YOLOv5 framework, including its subset models, with training on different datasets that differed in image contrast and cloudiness to assess model performances based on quantitative metrics and image processing speed. The hyperparameter in the feature-extraction phase...

Full description

Bibliographic Details
Main Authors: Iza Sazanita Isa, Mohamed Syazwan Asyraf Rosli, Umi Kalsom Yusof, Mohd Ikmal Fitri Maruzuki, Siti Noraini Sulaiman
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9773108/
Description
Summary:This study optimized the latest YOLOv5 framework, including its subset models, with training on different datasets that differed in image contrast and cloudiness to assess model performances based on quantitative metrics and image processing speed. The hyperparameter in the feature-extraction phase was configured based on the learning rate and momentum and further improved based on the adaptive moment estimation (ADAM) optimizer and the function reducing-learning-rate-on-plateau to optimize the model’s training scheme. The optimized YOLOv5s achieved a better performance, with a mean average precision of 98.6% and a high inference speed of 106 frames per second. The ADAM optimizer with a detailed learning rate (0.0001) and momentum (0.99) fine-tuning yielded a sufficient convergence rate (0.69% at 55th epoch) to assist YOLOv5s in attaining a more precise detection for underwater objects.
ISSN:2169-3536