Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles

Abstract In this numerical investigation, completely developed laminar convective heat transfer characteristics of a Williamson hybrid ferronanofluid over a cylindrical surface are reported. This new model in 2D is engaged to examine the effects of the magnetic field, thermal radiation factor, volum...

Full description

Bibliographic Details
Main Authors: Mohammed Z. Swalmeh, Firas A. Alwawi, Muhammad Salman Kausar, Mohd Asrul Hery Ibrahim, Abdulkareem Saleh Hamarsheh, Ibrahim Mohammed Sulaiman, Aliyu Muhammed Awwal, Nuttapol Pakkaranang, Bancha Panyanak
Format: Article
Language:English
Published: Nature Portfolio 2023-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-29707-5
_version_ 1797865141037957120
author Mohammed Z. Swalmeh
Firas A. Alwawi
Muhammad Salman Kausar
Mohd Asrul Hery Ibrahim
Abdulkareem Saleh Hamarsheh
Ibrahim Mohammed Sulaiman
Aliyu Muhammed Awwal
Nuttapol Pakkaranang
Bancha Panyanak
author_facet Mohammed Z. Swalmeh
Firas A. Alwawi
Muhammad Salman Kausar
Mohd Asrul Hery Ibrahim
Abdulkareem Saleh Hamarsheh
Ibrahim Mohammed Sulaiman
Aliyu Muhammed Awwal
Nuttapol Pakkaranang
Bancha Panyanak
author_sort Mohammed Z. Swalmeh
collection DOAJ
description Abstract In this numerical investigation, completely developed laminar convective heat transfer characteristics of a Williamson hybrid ferronanofluid over a cylindrical surface are reported. This new model in 2D is engaged to examine the effects of the magnetic field, thermal radiation factor, volume fraction of ultrafine particles, and Weissenberg number with the help of the Keller box method. The numerical calculations are implemented at a magnetic parameter range of 0.4 to 0.8, volume fraction range of 0.0 to 0.1, and a Weissenberg number range of 0.1 to 0.8. The numerical outcomes concluded that the velocity increases when the thermal radiation parameter and the volume fraction of a nanoparticle are increased, but inverse impacts are obtained for the magnetic parameter and the Weissenberg number. The rate of energy transport increases with increasing thermal radiation and volume fraction, while it declines with increasing the magnetic parameter and Weissenberg number. The drag force shows a positive relationship with the thermal radiation parameter and has an opposite relationship with the Weissenberg number and the magnetic parameter. Furthermore, even when the magnetic field, thermal radiation, volume fraction, and Weissenberg number are all present, the heat transfer rate of Williamson hybrid ferronanofluid is greater than that of mono Williamson ferronanofluid.
first_indexed 2024-04-09T23:03:10Z
format Article
id doaj.art-a8cc8ecd1a374779b489fe848e2dc884
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-04-09T23:03:10Z
publishDate 2023-02-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-a8cc8ecd1a374779b489fe848e2dc8842023-03-22T10:51:43ZengNature PortfolioScientific Reports2045-23222023-02-0113111810.1038/s41598-023-29707-5Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particlesMohammed Z. Swalmeh0Firas A. Alwawi1Muhammad Salman Kausar2Mohd Asrul Hery Ibrahim3Abdulkareem Saleh Hamarsheh4Ibrahim Mohammed Sulaiman5Aliyu Muhammed Awwal6Nuttapol Pakkaranang7Bancha Panyanak8Faculty of Arts and Sciences, Aqaba University of TechnologyDepartment of Mathematics, College of Sciences and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz UniversityFaculty of Informatics and Computing, Universiti Sultan Zainal Abidin (Kampus Gong Badak)Faculty of Entrepreneurship and Business, Universiti Malaysia KelantanDepartment of Mathematics, College of Sciences and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz UniversitySchool of Quantitative Sciences, Institute of Strategic Industrial Decision Modelling, Universiti Utara Malaysia, SintokDepartment of Mathematics, Faculty of Science, Gombe State University (GSU)Mathematics and Computing Science Program, Faculty of Science and Technology, Phetchabun Rajabhat UniversityResearch Group in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai UniversityAbstract In this numerical investigation, completely developed laminar convective heat transfer characteristics of a Williamson hybrid ferronanofluid over a cylindrical surface are reported. This new model in 2D is engaged to examine the effects of the magnetic field, thermal radiation factor, volume fraction of ultrafine particles, and Weissenberg number with the help of the Keller box method. The numerical calculations are implemented at a magnetic parameter range of 0.4 to 0.8, volume fraction range of 0.0 to 0.1, and a Weissenberg number range of 0.1 to 0.8. The numerical outcomes concluded that the velocity increases when the thermal radiation parameter and the volume fraction of a nanoparticle are increased, but inverse impacts are obtained for the magnetic parameter and the Weissenberg number. The rate of energy transport increases with increasing thermal radiation and volume fraction, while it declines with increasing the magnetic parameter and Weissenberg number. The drag force shows a positive relationship with the thermal radiation parameter and has an opposite relationship with the Weissenberg number and the magnetic parameter. Furthermore, even when the magnetic field, thermal radiation, volume fraction, and Weissenberg number are all present, the heat transfer rate of Williamson hybrid ferronanofluid is greater than that of mono Williamson ferronanofluid.https://doi.org/10.1038/s41598-023-29707-5
spellingShingle Mohammed Z. Swalmeh
Firas A. Alwawi
Muhammad Salman Kausar
Mohd Asrul Hery Ibrahim
Abdulkareem Saleh Hamarsheh
Ibrahim Mohammed Sulaiman
Aliyu Muhammed Awwal
Nuttapol Pakkaranang
Bancha Panyanak
Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
Scientific Reports
title Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title_full Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title_fullStr Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title_full_unstemmed Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title_short Numerical simulation on energy transfer enhancement of a Williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
title_sort numerical simulation on energy transfer enhancement of a williamson ferrofluid subjected to thermal radiation and a magnetic field using hybrid ultrafine particles
url https://doi.org/10.1038/s41598-023-29707-5
work_keys_str_mv AT mohammedzswalmeh numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT firasaalwawi numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT muhammadsalmankausar numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT mohdasrulheryibrahim numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT abdulkareemsalehhamarsheh numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT ibrahimmohammedsulaiman numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT aliyumuhammedawwal numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT nuttapolpakkaranang numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles
AT banchapanyanak numericalsimulationonenergytransferenhancementofawilliamsonferrofluidsubjectedtothermalradiationandamagneticfieldusinghybridultrafineparticles