Effect of MetaFoundation on the Seismic Responses of Liquid Storage Tanks

Cylindrical liquid storage tanks are vital lifeline structures, playing a critical role in industry and human life. Damages to these structures during previous earthquakes indicate their vulnerability against seismic events. A novel strategy to reduce the seismic demands in the structures is the use...

Full description

Bibliographic Details
Main Authors: Mostafa Farajian, Mohammad Iman Khodakarami, Pejman Sharafi
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/5/2514
Description
Summary:Cylindrical liquid storage tanks are vital lifeline structures, playing a critical role in industry and human life. Damages to these structures during previous earthquakes indicate their vulnerability against seismic events. A novel strategy to reduce the seismic demands in the structures is the use of metamaterials, being periodically placed in the foundation, called MetaFoundation (MF). The periodic configuration of metamaterials can create a stop band, leading to a decrease in wave propagation in the foundation. The aim of this paper is to study the effect of MF on the dynamic behaviour of liquid storage tanks. To that end, the governing equations of motion of the liquid storage tank equipped with MF are derived and solved in the time domain to obtain the time history of the responses under a set of ground motions. Then, the peak responses of tanks, mounted on MF, are compared with the corresponding responses in the fixed base condition. Besides, a parametric study is performed to assess the effect of the predominant frequency of earthquakes, the number of layers of metamaterials, the thickness of soft material, and the damping ratios of soft material on the performance of the MF. The obtained results indicate that the MF improves the dynamic behaviour of the squat tank, in which the mean ratio of responses using MF to the ones in the fixed base conditions equals 0.551 for impulsive displacement, overturning moment, and base shear.
ISSN:2076-3417