Multiphase dolomitization in the Jutana Formation (Cambrian), Salt Range (Pakistan): Evidences from field observations, microscopic studies and isotopic analysis

Excellent dolomite exposures are observed in the eastern Salt Range (Pakistan), where the Cambrian Jutana Formation consists of two distinct units (i.e. oolitic – pisolitic unit and massive dolomite unit). Field observations revealed that the lower, oolitic-pisolitic unit mostly comprises medium to...

Full description

Bibliographic Details
Main Authors: S. Khan, M.M. Shah
Format: Article
Language:English
Published: Universitat de Barcelona (UB), Geociències Barcelona (Geo3BCN), Institut de Diagnosi Ambiental i Estudis de l'Aigua (IDAEA), Universitat Autònoma de Barcelona (UAB) 2019-01-01
Series:Geologica Acta
Subjects:
Online Access:https://revistes.ub.edu/index.php/GEOACTA/article/view/GeologicaActa2019.17.2/28458
Description
Summary:Excellent dolomite exposures are observed in the eastern Salt Range (Pakistan), where the Cambrian Jutana Formation consists of two distinct units (i.e. oolitic – pisolitic unit and massive dolomite unit). Field observations revealed that the lower, oolitic-pisolitic unit mostly comprises medium to thick bedded, interlayered brown yellowish dolostone containing ooids/pisoids and faunal assemblages, and grey whitish sandstone with distinct depositional sedimentary features (i.e. trough-, herringbone- and hhummocky crossbedding). The upper massive dolostone unit consists of thick bedded to massive dolostone. These two units are separated by shale. Petrographic studies identified three dolomite types, which include: fine crystalline dolomite (Dol. I), medium-coarse crystalline dolomite (Dol. II) and fracture associated, coarse crystalline dolomite (Dol. III). Stable isotope studies indicate less depleted δ18O values for Dol. I (-6.44 to -3.76‰V-PDB), slightly depleted δ18O values for Dol. II (-7.73 to -5.24‰V-PDB) and more depleted δ18O values for Dol. III (-7.29 to -7.20‰V-PDB). The δ13C values of the three dolomite phases are well within the range of Cambrian sea-water signatures. Furthermore, δ26Mg-δ25Mg signatures (Dol. I; δ26Mg=-1.19 to -1.67, δ25Mg=-0.61 to -0.86 and Dol. II; δ26Mg=-1.34 to -1.59, δ25Mg=-0.70 to -0.83) indicate three phases of dolomitization in different diagenetic settings. First, an initial stage of dolomitization during the early Cambrian resulted from altered marine, Mg-rich fluids associated with the mixing zone mechanism. Second, a late stage of dolomitization was associated with burial during late Permian. A third dolomitization phase was related to post-Eocene times.
ISSN:1696-5728