Summary: | The purpose of our work is to leverage the use of artificial intelligence for the emergence of smart greenhouses. Greenhouse agriculture is a sustainable solution for food crises and therefore data-based decision-support mechanisms are needed to optimally use them. Our study anticipates how the combination of climatic systems will affect the temperature and humidity of the greenhouse. More specifically, our methodology anticipates if a set-point will be reached in a given time by a combination of climatic systems and estimates the humidity at that time. We performed exhaustive data analytics processing that includes the interpolation of missing values and data augmentation, and tested several classification and regression algorithms. Our method can predict with a 90% accuracy if, under current conditions, a combination of climatic systems will reach a fixed temperature set-point, and it is also able to estimate the humidity with a 2.83% CVRMSE. We integrated our methodology on a three-layer holistic IoT platform that is able to collect, fuse and analyze real data in a seamless way.
|