On the <i>A</i><sub>α</sub>-Spectral Radii of Cactus Graphs

Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the adjacent matrix and <inline-f...

Full description

Bibliographic Details
Main Authors: Chunxiang Wang, Shaohui Wang, Jia-Bao Liu, Bing Wei
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/6/869
_version_ 1827716020173799424
author Chunxiang Wang
Shaohui Wang
Jia-Bao Liu
Bing Wei
author_facet Chunxiang Wang
Shaohui Wang
Jia-Bao Liu
Bing Wei
author_sort Chunxiang Wang
collection DOAJ
description Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the adjacent matrix and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> the diagonal matrix of the degrees of a graph <i>G</i>, respectively. For <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>α</mi> <mo>≤</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, the <inline-formula> <math display="inline"> <semantics> <msub> <mi>A</mi> <mi>α</mi> </msub> </semantics> </math> </inline-formula>-matrix is the general adjacency and signless Laplacian spectral matrix having the form of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>A</mi> <mi>α</mi> </msub> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>α</mi> <mi>D</mi> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>α</mi> <mo>)</mo> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. Clearly, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>A</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is the adjacent matrix and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <msub> <mi>A</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msub> </mrow> </semantics> </math> </inline-formula> is the signless Laplacian matrix. A cactus is a connected graph such that any two of its cycles have at most one common vertex, that is an extension of the tree. The <inline-formula> <math display="inline"> <semantics> <msub> <mi>A</mi> <mi>α</mi> </msub> </semantics> </math> </inline-formula>-spectral radius of a cactus graph with <i>n</i> vertices and <i>k</i> cycles is explored. The outcomes obtained in this paper can imply some previous bounds from trees to cacti. In addition, the corresponding extremal graphs are determined. Furthermore, we proposed all eigenvalues of such extremal cacti. Our results extended and enriched previous known results.
first_indexed 2024-03-10T19:31:44Z
format Article
id doaj.art-a90bb74d260146b68ced11b25451a943
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T19:31:44Z
publishDate 2020-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-a90bb74d260146b68ced11b25451a9432023-11-20T02:06:13ZengMDPI AGMathematics2227-73902020-05-018686910.3390/math8060869On the <i>A</i><sub>α</sub>-Spectral Radii of Cactus GraphsChunxiang Wang0Shaohui Wang1Jia-Bao Liu2Bing Wei3School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, ChinaDepartment of Mathematics, Louisiana College, Pineville, LA 71359, USASchool of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, ChinaDepartment of Mathematics, University of Mississippi, University, MS 38677, USALet <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> be the adjacent matrix and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> the diagonal matrix of the degrees of a graph <i>G</i>, respectively. For <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>α</mi> <mo>≤</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, the <inline-formula> <math display="inline"> <semantics> <msub> <mi>A</mi> <mi>α</mi> </msub> </semantics> </math> </inline-formula>-matrix is the general adjacency and signless Laplacian spectral matrix having the form of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>A</mi> <mi>α</mi> </msub> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>α</mi> <mi>D</mi> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>α</mi> <mo>)</mo> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. Clearly, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>A</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is the adjacent matrix and <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <msub> <mi>A</mi> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msub> </mrow> </semantics> </math> </inline-formula> is the signless Laplacian matrix. A cactus is a connected graph such that any two of its cycles have at most one common vertex, that is an extension of the tree. The <inline-formula> <math display="inline"> <semantics> <msub> <mi>A</mi> <mi>α</mi> </msub> </semantics> </math> </inline-formula>-spectral radius of a cactus graph with <i>n</i> vertices and <i>k</i> cycles is explored. The outcomes obtained in this paper can imply some previous bounds from trees to cacti. In addition, the corresponding extremal graphs are determined. Furthermore, we proposed all eigenvalues of such extremal cacti. Our results extended and enriched previous known results.https://www.mdpi.com/2227-7390/8/6/869signless Laplacianadjacency matrixtreecacti
spellingShingle Chunxiang Wang
Shaohui Wang
Jia-Bao Liu
Bing Wei
On the <i>A</i><sub>α</sub>-Spectral Radii of Cactus Graphs
Mathematics
signless Laplacian
adjacency matrix
tree
cacti
title On the <i>A</i><sub>α</sub>-Spectral Radii of Cactus Graphs
title_full On the <i>A</i><sub>α</sub>-Spectral Radii of Cactus Graphs
title_fullStr On the <i>A</i><sub>α</sub>-Spectral Radii of Cactus Graphs
title_full_unstemmed On the <i>A</i><sub>α</sub>-Spectral Radii of Cactus Graphs
title_short On the <i>A</i><sub>α</sub>-Spectral Radii of Cactus Graphs
title_sort on the i a i sub α sub spectral radii of cactus graphs
topic signless Laplacian
adjacency matrix
tree
cacti
url https://www.mdpi.com/2227-7390/8/6/869
work_keys_str_mv AT chunxiangwang ontheiaisubasubspectralradiiofcactusgraphs
AT shaohuiwang ontheiaisubasubspectralradiiofcactusgraphs
AT jiabaoliu ontheiaisubasubspectralradiiofcactusgraphs
AT bingwei ontheiaisubasubspectralradiiofcactusgraphs