Gene Cascade Finder: A tool for identification of gene cascades and its application in Caenorhabditis elegans.

Obtaining a comprehensive understanding of the gene regulatory networks, or gene cascades, involved in cell fate determination and cell lineage segregation in Caenorhabditis elegans is a long-standing challenge. Although RNA-sequencing (RNA-Seq) is a promising technique to resolve these questions, t...

Full description

Bibliographic Details
Main Authors: Yusuke Nomoto, Yukihiro Kubota, Yuto Ohnishi, Kota Kasahara, Aimi Tomita, Takehiro Oshime, Hiroki Yamashita, Muhamad Fahmi, Masahiro Ito
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0215187
Description
Summary:Obtaining a comprehensive understanding of the gene regulatory networks, or gene cascades, involved in cell fate determination and cell lineage segregation in Caenorhabditis elegans is a long-standing challenge. Although RNA-sequencing (RNA-Seq) is a promising technique to resolve these questions, the bioinformatics tools to identify associated gene cascades from RNA-Seq data remain inadequate. To overcome these limitations, we developed Gene Cascade Finder (GCF) as a novel tool for building gene cascades by comparison of mutant and wild-type RNA-Seq data along with integrated information of protein-protein interactions, expression timing, and domains. Application of GCF to RNA-Seq data confirmed that SPN-4 and MEX-3 regulate the canonical Wnt pathway during embryonic development. Moreover, lin-35, hsp-3, and gpa-12 were found to be involved in MEX-1-dependent neurogenesis, and MEX-3 was found to control the gene cascade promoting neurogenesis through lin-35 and apl-1. Thus, GCF could be a useful tool for building gene cascades from RNA-Seq data.
ISSN:1932-6203