Coplanar Electrode Polymer Modulators Incorporating Fluorinated Polyimide Backbone Electro-Optic Polymer

High-speed coherent optical communication has been expanding to handle the ever-increasing data traffic, and the large modulation bandwidth of electro-optic (EO) polymer modulators has been especially appreciated. However, to be useful in optical communication, the EO polymer device should address s...

Full description

Bibliographic Details
Main Authors: Eun-Su Lee, Sung-Moon Kim, Mi-Hye Yi, Jae-Won Ka, Min-Cheol Oh
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/7/4/100
Description
Summary:High-speed coherent optical communication has been expanding to handle the ever-increasing data traffic, and the large modulation bandwidth of electro-optic (EO) polymer modulators has been especially appreciated. However, to be useful in optical communication, the EO polymer device should address several issues, such as thermal stability, photo-oxidation, and bias drift. In this work, as a part of the experiments to address these challenges, an EO polymer with a fluorinated polyimide backbone is utilized to create EO polymer modulators with improved thermal stability. A coplanar electrode structure is introduced to enhance the poling efficiency and reduce the bias drift.
ISSN:2304-6732