Increase of Paper Strength and Bulk by Co-Flocculation of Fines and Fly Ash-based Calcium Silicate

Fly ash-based calcium silicate (FACS), which has a large surface area (121 m2/g) and porous structure, has the potential to be used as a filler for the production of high-bulk paper. In theory, paper with a higher bulk has a lower strength. This work explores the possibility of improving paper stren...

Full description

Bibliographic Details
Main Authors: Meiyun Zhang, Qiumei Li, Shunxi Song, Ning Hao, Guodong Liu
Format: Article
Language:English
Published: North Carolina State University 2016-07-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_3_7406_Zhang_Paper_Strength_Bulk_Flocculation
Description
Summary:Fly ash-based calcium silicate (FACS), which has a large surface area (121 m2/g) and porous structure, has the potential to be used as a filler for the production of high-bulk paper. In theory, paper with a higher bulk has a lower strength. This work explores the possibility of improving paper strength without compromising its bulk through co-flocculation of cellulosic fines and FACS. To investigate the effect of co-flocculation on paper properties, composites made with various ratios of fines to FACS were studied. Results showed that paper bulk and tensile strength increased with increasing ratio of fines to FACS, up to 0.3 at 17% filler content. To further confirm these findings, the structures of composites were studied with a light microscope and scanning electronic microscope (SEM). Images showed that the composite formed at the ratio of 0.3 exhibited a larger size and looser structure than other composites, which can be attributed to the improvement of the paper’s strength and bulk. Schemes for the composite formation process and its interactions with fibers were also proposed.
ISSN:1930-2126
1930-2126