Deep Learning with Attention Mechanisms for Road Weather Detection

There is great interest in automatically detecting road weather and understanding its impacts on the overall safety of the transport network. This can, for example, support road condition-based maintenance or even serve as detection systems that assist safe driving during adverse climate conditions....

Full description

Bibliographic Details
Main Authors: Madiha Samo, Jimiama Mosima Mafeni Mase, Grazziela Figueredo
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/2/798
Description
Summary:There is great interest in automatically detecting road weather and understanding its impacts on the overall safety of the transport network. This can, for example, support road condition-based maintenance or even serve as detection systems that assist safe driving during adverse climate conditions. In computer vision, previous work has demonstrated the effectiveness of deep learning in predicting weather conditions from outdoor images. However, training deep learning models to accurately predict weather conditions using real-world road-facing images is difficult due to: (1) the simultaneous occurrence of multiple weather conditions; (2) imbalanced occurrence of weather conditions throughout the year; and (3) road idiosyncrasies, such as road layouts, illumination, and road objects, etc. In this paper, we explore the use of a focal loss function to force the learning process to focus on weather instances that are hard to learn with the objective of helping address data imbalances. In addition, we explore the attention mechanism for pixel-based dynamic weight adjustment to handle road idiosyncrasies using state-of-the-art vision transformer models. Experiments with a novel multi-label road weather dataset show that focal loss significantly increases the accuracy of computer vision approaches for imbalanced weather conditions. Furthermore, vision transformers outperform current state-of-the-art convolutional neural networks in predicting weather conditions with a validation accuracy of 92% and an F1-score of 81.22%, which is impressive considering the imbalanced nature of the dataset.
ISSN:1424-8220