Narrow-Linewidth 852-nm DBR-LD with Self-Injection Lock Based on High-Finesse Optical Cavity Filtering

Narrow-linewidth lasers have a high spectral purity, long coherent length, and low phase noise, so they have important applications in atomic clocks, precision measurement, and quantum computing. We inject a transmitted laser from a narrow-linewidth (∼15 kHz) flat-concave Fabry–Perot (F-P) cavity ma...

Full description

Bibliographic Details
Main Authors: Lili Hao, Rui Chang, Xiaokai Hou, Jun He, Junmin Wang
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/10/8/936
Description
Summary:Narrow-linewidth lasers have a high spectral purity, long coherent length, and low phase noise, so they have important applications in atomic clocks, precision measurement, and quantum computing. We inject a transmitted laser from a narrow-linewidth (∼15 kHz) flat-concave Fabry–Perot (F-P) cavity made from ultra-low expansion (ULE) optical glass into an 852 nm distributed Bragg reflector-type laser diode (DBR-LD), of which the comprehensive linewidth is 1.67 MHz for the free running case. With an increase in the self-injection power, the laser linewidth gradually narrows, and the injection locking current range gradually increases. The narrowest linewidth measured by the delayed frequency-shifted self-heterodyne (DFSSH) method is about 365 Hz, which is about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><mn>4500</mn></mrow></semantics></math></inline-formula> of the linewidth for the free running case. Moreover, to characterize the laser phase noise, we use a detuned F-P cavity to measure the conversion signal from the laser phase noise to the intensity noise for both the free running case and the self-injection lock case. The laser phase noise for the self-injection lock case is significantly suppressed in the analysis frequency range of 0.1–10 MHz compared to the free running case. In particular, the phase noise is suppressed by more than 30 dB at an analysis frequency of 100 kHz.
ISSN:2304-6732