Circular Wilson loop in N $$ \mathcal{N} $$ = 2* super Yang-Mills theory at two loops and localization

Abstract We present a two-loop calculation of the supersymmetric circular Wilson loop in the N $$ \mathcal{N} $$ = 2* super Yang-Mills theory on the four-sphere. We develop an efficient framework for computing contributing Feynman graphs that relies on using the embedding coordinates combined with t...

Full description

Bibliographic Details
Main Authors: A. V. Belitsky, G. P. Korchemsky
Format: Article
Language:English
Published: SpringerOpen 2021-04-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP04(2021)089
_version_ 1818730099581648896
author A. V. Belitsky
G. P. Korchemsky
author_facet A. V. Belitsky
G. P. Korchemsky
author_sort A. V. Belitsky
collection DOAJ
description Abstract We present a two-loop calculation of the supersymmetric circular Wilson loop in the N $$ \mathcal{N} $$ = 2* super Yang-Mills theory on the four-sphere. We develop an efficient framework for computing contributing Feynman graphs that relies on using the embedding coordinates combined with the Mellin-Barnes techniques for propagator-like integrals on the sphere. Our results exactly match predictions of supersymmetric localization providing a nontrivial consistency check for the latter in non-conformal settings.
first_indexed 2024-12-17T22:56:24Z
format Article
id doaj.art-a9247a36cc5545209b6b89e785f1519c
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-12-17T22:56:24Z
publishDate 2021-04-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-a9247a36cc5545209b6b89e785f1519c2022-12-21T21:29:33ZengSpringerOpenJournal of High Energy Physics1029-84792021-04-012021413610.1007/JHEP04(2021)089Circular Wilson loop in N $$ \mathcal{N} $$ = 2* super Yang-Mills theory at two loops and localizationA. V. Belitsky0G. P. Korchemsky1Department of Physics, Arizona State UniversityInstitut de Physique Théorique (Unité Mixte de Recherche 3681 du CNRS), Université Paris Saclay, CNRS, CEAAbstract We present a two-loop calculation of the supersymmetric circular Wilson loop in the N $$ \mathcal{N} $$ = 2* super Yang-Mills theory on the four-sphere. We develop an efficient framework for computing contributing Feynman graphs that relies on using the embedding coordinates combined with the Mellin-Barnes techniques for propagator-like integrals on the sphere. Our results exactly match predictions of supersymmetric localization providing a nontrivial consistency check for the latter in non-conformal settings.https://doi.org/10.1007/JHEP04(2021)089Wilson, ’t Hooft and Polyakov loopsSupersymmetric Gauge TheoryExtended Supersymmetry
spellingShingle A. V. Belitsky
G. P. Korchemsky
Circular Wilson loop in N $$ \mathcal{N} $$ = 2* super Yang-Mills theory at two loops and localization
Journal of High Energy Physics
Wilson, ’t Hooft and Polyakov loops
Supersymmetric Gauge Theory
Extended Supersymmetry
title Circular Wilson loop in N $$ \mathcal{N} $$ = 2* super Yang-Mills theory at two loops and localization
title_full Circular Wilson loop in N $$ \mathcal{N} $$ = 2* super Yang-Mills theory at two loops and localization
title_fullStr Circular Wilson loop in N $$ \mathcal{N} $$ = 2* super Yang-Mills theory at two loops and localization
title_full_unstemmed Circular Wilson loop in N $$ \mathcal{N} $$ = 2* super Yang-Mills theory at two loops and localization
title_short Circular Wilson loop in N $$ \mathcal{N} $$ = 2* super Yang-Mills theory at two loops and localization
title_sort circular wilson loop in n mathcal n 2 super yang mills theory at two loops and localization
topic Wilson, ’t Hooft and Polyakov loops
Supersymmetric Gauge Theory
Extended Supersymmetry
url https://doi.org/10.1007/JHEP04(2021)089
work_keys_str_mv AT avbelitsky circularwilsonloopinnmathcaln2superyangmillstheoryattwoloopsandlocalization
AT gpkorchemsky circularwilsonloopinnmathcaln2superyangmillstheoryattwoloopsandlocalization