A Novel Deep Learning System with Data Augmentation for Machine Fault Diagnosis from Vibration Signals

In real engineering scenarios, it is difficult to collect adequate cases with faulty conditions to train an intelligent diagnosis system. To alleviate the problem of limited fault data, this paper proposes a fault diagnosis method combining a generative adversarial network (GAN) and stacked denoisin...

Full description

Bibliographic Details
Main Authors: Qiang Fu, Huawei Wang
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/17/5765
Description
Summary:In real engineering scenarios, it is difficult to collect adequate cases with faulty conditions to train an intelligent diagnosis system. To alleviate the problem of limited fault data, this paper proposes a fault diagnosis method combining a generative adversarial network (GAN) and stacked denoising auto-encoder (SDAE). The GAN approach augments the limited real measured data, especially in faulty conditions. The generated data are then transformed into the SDAE fault diagnosis model. The GAN-SDAE approach improves the accuracy of the fault diagnosis from the vibration signals, especially when the measured samples are few. The usefulness of this method is assessed through two condition-monitoring cases: one is a classic bearing example and the other is a more general gear failure. The results demonstrate that diagnosis accuracy for both cases is above 90% for various working conditions, and the GAN-SDAE system is stable.
ISSN:2076-3417