Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids
In this paper, a new approach is proposed for voltage and current harmonics compensation in grid-connected microgrids (MGs). If sensitive loads are connected to the point of common coupling (PCC), compensation is carried out in order to reduce PCC voltage harmonics. In absence of sensitive loads at...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Mohaghegh Ardabili
2016-06-01
|
Series: | Journal of Operation and Automation in Power Engineering |
Subjects: | |
Online Access: | http://joape.uma.ac.ir/article_428_11b1f55fc7b1f79a62b2f2ae50109c4b.pdf |
_version_ | 1819297270922739712 |
---|---|
author | Reza Ghanizadeh Mahmoud Ebadian Gevork B. Gharehpetian |
author_facet | Reza Ghanizadeh Mahmoud Ebadian Gevork B. Gharehpetian |
author_sort | Reza Ghanizadeh |
collection | DOAJ |
description | In this paper, a new approach is proposed for voltage and current harmonics compensation in grid-connected microgrids (MGs). If sensitive loads are connected to the point of common coupling (PCC), compensation is carried out in order to reduce PCC voltage harmonics. In absence of sensitive loads at PCC, current harmonics compensation scenario is selected in order to avoid excessive injection of harmonics by the main grid. In both scenarios, compensation is performed by the interface converters of distributed generation (DG) units. Also, to decrease the asymmetry among phase impedances of MG, a novel structure is proposed to generate virtual impedance. At fundamental frequency, the proposed structure for the virtual impedance improves the control of the fundamental component of power, and at harmonic frequencies, it acts to adaptively improve nonlinear load sharing among DG units. In the structures of the proposed harmonics compensator and the proposed virtual impedance, a self-tuning filter (STF) is used for separating the fundamental component from the harmonic components. This STF decreases the number of phase locked loops (PLLs). Simulation results in MATLAB/SIMULINK environment show the efficiency of the proposed approach in improving load sharing and decreasing voltage and current harmonics. |
first_indexed | 2024-12-24T05:11:21Z |
format | Article |
id | doaj.art-a92f8a6f572c4a45a5a512c46212e4d3 |
institution | Directory Open Access Journal |
issn | 2322-4576 2423-4567 |
language | English |
last_indexed | 2024-12-24T05:11:21Z |
publishDate | 2016-06-01 |
publisher | University of Mohaghegh Ardabili |
record_format | Article |
series | Journal of Operation and Automation in Power Engineering |
spelling | doaj.art-a92f8a6f572c4a45a5a512c46212e4d32022-12-21T17:13:40ZengUniversity of Mohaghegh ArdabiliJournal of Operation and Automation in Power Engineering2322-45762423-45672016-06-01416682428Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected MicrogridsReza Ghanizadeh0Mahmoud Ebadian1Gevork B. Gharehpetian2Department of Electrical Engineering, University of Birjand, Birjand, IranDepartment of Electrical and computer Engineering, University of Birjand, Birjand, Iran.Department of Electrical Engineering, Amirkabir University of Technology, Tehran, IranIn this paper, a new approach is proposed for voltage and current harmonics compensation in grid-connected microgrids (MGs). If sensitive loads are connected to the point of common coupling (PCC), compensation is carried out in order to reduce PCC voltage harmonics. In absence of sensitive loads at PCC, current harmonics compensation scenario is selected in order to avoid excessive injection of harmonics by the main grid. In both scenarios, compensation is performed by the interface converters of distributed generation (DG) units. Also, to decrease the asymmetry among phase impedances of MG, a novel structure is proposed to generate virtual impedance. At fundamental frequency, the proposed structure for the virtual impedance improves the control of the fundamental component of power, and at harmonic frequencies, it acts to adaptively improve nonlinear load sharing among DG units. In the structures of the proposed harmonics compensator and the proposed virtual impedance, a self-tuning filter (STF) is used for separating the fundamental component from the harmonic components. This STF decreases the number of phase locked loops (PLLs). Simulation results in MATLAB/SIMULINK environment show the efficiency of the proposed approach in improving load sharing and decreasing voltage and current harmonics.http://joape.uma.ac.ir/article_428_11b1f55fc7b1f79a62b2f2ae50109c4b.pdfDistributed generationMicrogridLoad SharingVoltage and current Harmonics CompensationSelf-Tuning Filter |
spellingShingle | Reza Ghanizadeh Mahmoud Ebadian Gevork B. Gharehpetian Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids Journal of Operation and Automation in Power Engineering Distributed generation Microgrid Load Sharing Voltage and current Harmonics Compensation Self-Tuning Filter |
title | Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids |
title_full | Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids |
title_fullStr | Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids |
title_full_unstemmed | Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids |
title_short | Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids |
title_sort | control of inverter interfaced distributed generation units for voltage and current harmonics compensation in grid connected microgrids |
topic | Distributed generation Microgrid Load Sharing Voltage and current Harmonics Compensation Self-Tuning Filter |
url | http://joape.uma.ac.ir/article_428_11b1f55fc7b1f79a62b2f2ae50109c4b.pdf |
work_keys_str_mv | AT rezaghanizadeh controlofinverterinterfaceddistributedgenerationunitsforvoltageandcurrentharmonicscompensationingridconnectedmicrogrids AT mahmoudebadian controlofinverterinterfaceddistributedgenerationunitsforvoltageandcurrentharmonicscompensationingridconnectedmicrogrids AT gevorkbgharehpetian controlofinverterinterfaceddistributedgenerationunitsforvoltageandcurrentharmonicscompensationingridconnectedmicrogrids |