Design of a Portable Analyzer to Determine the Net Exchange of CO<sub>2</sub> in Rice Field Ecosystems

Global warming is influenced by an increase in greenhouse gas (GHG) concentration in the atmosphere. Consequently, Net Ecosystem Exchange (NEE) is the main factor that influences the exchange of carbon (C) between the atmosphere and the soil. As a result, agricultural ecosystems are a potential carb...

Full description

Bibliographic Details
Main Authors: Mirko Bonilla-Cordova, Lena Cruz-Villacorta, Ida Echegaray-Cabrera, Lia Ramos-Fernández, Lisveth Flores del Pino
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/2/402
_version_ 1797339429304532992
author Mirko Bonilla-Cordova
Lena Cruz-Villacorta
Ida Echegaray-Cabrera
Lia Ramos-Fernández
Lisveth Flores del Pino
author_facet Mirko Bonilla-Cordova
Lena Cruz-Villacorta
Ida Echegaray-Cabrera
Lia Ramos-Fernández
Lisveth Flores del Pino
author_sort Mirko Bonilla-Cordova
collection DOAJ
description Global warming is influenced by an increase in greenhouse gas (GHG) concentration in the atmosphere. Consequently, Net Ecosystem Exchange (NEE) is the main factor that influences the exchange of carbon (C) between the atmosphere and the soil. As a result, agricultural ecosystems are a potential carbon dioxide (CO<sub>2</sub>) sink, particularly rice paddies (<i>Oryza sativa</i>). Therefore, a static chamber with a portable CO<sub>2</sub> analyzer was designed and implemented for three rice plots to monitor CO<sub>2</sub> emissions. Furthermore, a weather station was installed to record meteorological variables. The vegetative, reproductive, and maturation phases of the crop lasted 95, 35, and 42 days post-sowing (DPS), respectively. In total, the crop lasted 172 DPS. Diurnal NEE had the highest CO<sub>2</sub> absorption capacity at 10:00 a.m. for the tillering stage (82 and 89 DPS), floral primordium (102 DPS), panicle initiation (111 DPS), and flowering (126 DPS). On the other hand, the maximum CO<sub>2</sub> emission at 82, 111, and 126 DPS occurred at 6:00 p.m. At 89 and 102 DPS, it occurred at 4:00 and 6:00 a.m., respectively. NEE in the vegetative stage was −25 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">l</mi><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow><mo> </mo><msup><mrow><mi mathvariant="normal">m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, and in the reproductive stage, it was −35 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">l</mi><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow><mo> </mo><msup><mrow><mi mathvariant="normal">m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, indicating the highest absorption capacity of the plots. The seasonal dynamics of NEE were mainly controlled by the air temperature inside the chamber (Tc) (R = −0.69), the relative humidity inside the chamber (RHc) (R = −0.66), and net radiation (R<sub>n</sub>) (R = −0.75). These results are similar to previous studies obtained via chromatographic analysis and eddy covariance (EC), which suggests that the portable analyzer could be an alternative for CO<sub>2</sub> monitoring.
first_indexed 2024-03-08T09:47:58Z
format Article
id doaj.art-a944b7b8bbc74c21a68536b0962b7718
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-08T09:47:58Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-a944b7b8bbc74c21a68536b0962b77182024-01-29T14:14:19ZengMDPI AGSensors1424-82202024-01-0124240210.3390/s24020402Design of a Portable Analyzer to Determine the Net Exchange of CO<sub>2</sub> in Rice Field EcosystemsMirko Bonilla-Cordova0Lena Cruz-Villacorta1Ida Echegaray-Cabrera2Lia Ramos-Fernández3Lisveth Flores del Pino4Department of Environmental Engineering, Universidad Nacional Agraria La Molina, Lima 15024, PeruDepartment of Territorial Planning and Doctoral Program of Engineering and Environmental Sciences, Universidad Nacional Agraria La Molina, Lima 15024, PeruDepartment of Environmental Engineering, Universidad Nacional Agraria La Molina, Lima 15024, PeruDepartment of Water Resources, Universidad Nacional Agraria La Molina, Lima 15024, PeruResearch Center for Environmental Chemistry, Toxicology and Biotechnology, Universidad Nacional Agraria La Molina, Lima 15024, PeruGlobal warming is influenced by an increase in greenhouse gas (GHG) concentration in the atmosphere. Consequently, Net Ecosystem Exchange (NEE) is the main factor that influences the exchange of carbon (C) between the atmosphere and the soil. As a result, agricultural ecosystems are a potential carbon dioxide (CO<sub>2</sub>) sink, particularly rice paddies (<i>Oryza sativa</i>). Therefore, a static chamber with a portable CO<sub>2</sub> analyzer was designed and implemented for three rice plots to monitor CO<sub>2</sub> emissions. Furthermore, a weather station was installed to record meteorological variables. The vegetative, reproductive, and maturation phases of the crop lasted 95, 35, and 42 days post-sowing (DPS), respectively. In total, the crop lasted 172 DPS. Diurnal NEE had the highest CO<sub>2</sub> absorption capacity at 10:00 a.m. for the tillering stage (82 and 89 DPS), floral primordium (102 DPS), panicle initiation (111 DPS), and flowering (126 DPS). On the other hand, the maximum CO<sub>2</sub> emission at 82, 111, and 126 DPS occurred at 6:00 p.m. At 89 and 102 DPS, it occurred at 4:00 and 6:00 a.m., respectively. NEE in the vegetative stage was −25 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">l</mi><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow><mo> </mo><msup><mrow><mi mathvariant="normal">m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, and in the reproductive stage, it was −35 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">l</mi><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow><mo> </mo><msup><mrow><mi mathvariant="normal">m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo> </mo><msup><mrow><mi mathvariant="normal">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, indicating the highest absorption capacity of the plots. The seasonal dynamics of NEE were mainly controlled by the air temperature inside the chamber (Tc) (R = −0.69), the relative humidity inside the chamber (RHc) (R = −0.66), and net radiation (R<sub>n</sub>) (R = −0.75). These results are similar to previous studies obtained via chromatographic analysis and eddy covariance (EC), which suggests that the portable analyzer could be an alternative for CO<sub>2</sub> monitoring.https://www.mdpi.com/1424-8220/24/2/402sensorsinfrared detectorscamera trappingcrop monitoringrice fields
spellingShingle Mirko Bonilla-Cordova
Lena Cruz-Villacorta
Ida Echegaray-Cabrera
Lia Ramos-Fernández
Lisveth Flores del Pino
Design of a Portable Analyzer to Determine the Net Exchange of CO<sub>2</sub> in Rice Field Ecosystems
Sensors
sensors
infrared detectors
camera trapping
crop monitoring
rice fields
title Design of a Portable Analyzer to Determine the Net Exchange of CO<sub>2</sub> in Rice Field Ecosystems
title_full Design of a Portable Analyzer to Determine the Net Exchange of CO<sub>2</sub> in Rice Field Ecosystems
title_fullStr Design of a Portable Analyzer to Determine the Net Exchange of CO<sub>2</sub> in Rice Field Ecosystems
title_full_unstemmed Design of a Portable Analyzer to Determine the Net Exchange of CO<sub>2</sub> in Rice Field Ecosystems
title_short Design of a Portable Analyzer to Determine the Net Exchange of CO<sub>2</sub> in Rice Field Ecosystems
title_sort design of a portable analyzer to determine the net exchange of co sub 2 sub in rice field ecosystems
topic sensors
infrared detectors
camera trapping
crop monitoring
rice fields
url https://www.mdpi.com/1424-8220/24/2/402
work_keys_str_mv AT mirkobonillacordova designofaportableanalyzertodeterminethenetexchangeofcosub2subinricefieldecosystems
AT lenacruzvillacorta designofaportableanalyzertodeterminethenetexchangeofcosub2subinricefieldecosystems
AT idaechegaraycabrera designofaportableanalyzertodeterminethenetexchangeofcosub2subinricefieldecosystems
AT liaramosfernandez designofaportableanalyzertodeterminethenetexchangeofcosub2subinricefieldecosystems
AT lisvethfloresdelpino designofaportableanalyzertodeterminethenetexchangeofcosub2subinricefieldecosystems