New Approaches to Friction Stir Welding of Aluminum Light-Alloys
Friction stir welding (FSW) is the most widely used solid-state joining technique for light-weight plate and sheet products. This new joining technique is considered an energy-saving, environment friendly, and relatively versatile technology. FSW has been found to be a reliable joining technique in...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/10/2/233 |
_version_ | 1818187133058285568 |
---|---|
author | Marcello Cabibbo Archimede Forcellese Eleonora Santecchia Chiara Paoletti Stefano Spigarelli Michela Simoncini |
author_facet | Marcello Cabibbo Archimede Forcellese Eleonora Santecchia Chiara Paoletti Stefano Spigarelli Michela Simoncini |
author_sort | Marcello Cabibbo |
collection | DOAJ |
description | Friction stir welding (FSW) is the most widely used solid-state joining technique for light-weight plate and sheet products. This new joining technique is considered an energy-saving, environment friendly, and relatively versatile technology. FSW has been found to be a reliable joining technique in high-demand technology fields, such as high-strength aerospace aluminum and titanium alloys, and for other metallic alloys that are hard to weld by conventional fusion welding. Several studies accounted for the microstructural modifications induced by solid-state FSW, based on the resulting mechanical properties obtained at the FSW joints, such as tensile, bending, torsion, ductility and fatigue responses. In the last few years with the need and emerging urgency to widen the FSW application fields, broadening the possible alloy systems, and to optimize the resulting mechanical properties, this joining technique was further developed. In this respect, the present contribution focuses on two modified-FSW techniques and approaches applied to aluminum alloys plates. In a first case, an age-hardening AA6082 sheets were double side friction stir welded (DS-FSW). In a second case a non-age-hardening AA5754 sheet was FSW by an innovative approach in which welding pin was forced to slightly deviate away from the joining centreline (defined by authors as RT). In both the cases different pin heights were used, the sheets were subjected to heat treatments (peak hardening T6 for the AA6082, and annealing for the AA5754) and compared to the non-heat treated FSW conditions. Microstructural modifications were characterized by optical microscopy (OM). The mechanical properties were characterized both locally, by nanoindentation techniques, and globally, by tensile (yield, YT; ultimate, UT; and elongation, El) or forming limit curve (FLC) tests. Both the new approaches were directly compared to the conventional FSW techniques in terms of resulting microstructures and mechanical responses. |
first_indexed | 2024-12-11T23:06:11Z |
format | Article |
id | doaj.art-a946cf78731a43e5b2e2ab65ff009b66 |
institution | Directory Open Access Journal |
issn | 2075-4701 |
language | English |
last_indexed | 2024-12-11T23:06:11Z |
publishDate | 2020-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Metals |
spelling | doaj.art-a946cf78731a43e5b2e2ab65ff009b662022-12-22T00:46:56ZengMDPI AGMetals2075-47012020-02-0110223310.3390/met10020233met10020233New Approaches to Friction Stir Welding of Aluminum Light-AlloysMarcello Cabibbo0Archimede Forcellese1Eleonora Santecchia2Chiara Paoletti3Stefano Spigarelli4Michela Simoncini5Department of Industrial Engineering and Mathematical Sciences (DIISM), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyDepartment of Industrial Engineering and Mathematical Sciences (DIISM), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyDepartment of Industrial Engineering and Mathematical Sciences (DIISM), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyDepartment of Industrial Engineering and Mathematical Sciences (DIISM), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyDepartment of Industrial Engineering and Mathematical Sciences (DIISM), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyDepartment of Industrial Engineering and Mathematical Sciences (DIISM), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, ItalyFriction stir welding (FSW) is the most widely used solid-state joining technique for light-weight plate and sheet products. This new joining technique is considered an energy-saving, environment friendly, and relatively versatile technology. FSW has been found to be a reliable joining technique in high-demand technology fields, such as high-strength aerospace aluminum and titanium alloys, and for other metallic alloys that are hard to weld by conventional fusion welding. Several studies accounted for the microstructural modifications induced by solid-state FSW, based on the resulting mechanical properties obtained at the FSW joints, such as tensile, bending, torsion, ductility and fatigue responses. In the last few years with the need and emerging urgency to widen the FSW application fields, broadening the possible alloy systems, and to optimize the resulting mechanical properties, this joining technique was further developed. In this respect, the present contribution focuses on two modified-FSW techniques and approaches applied to aluminum alloys plates. In a first case, an age-hardening AA6082 sheets were double side friction stir welded (DS-FSW). In a second case a non-age-hardening AA5754 sheet was FSW by an innovative approach in which welding pin was forced to slightly deviate away from the joining centreline (defined by authors as RT). In both the cases different pin heights were used, the sheets were subjected to heat treatments (peak hardening T6 for the AA6082, and annealing for the AA5754) and compared to the non-heat treated FSW conditions. Microstructural modifications were characterized by optical microscopy (OM). The mechanical properties were characterized both locally, by nanoindentation techniques, and globally, by tensile (yield, YT; ultimate, UT; and elongation, El) or forming limit curve (FLC) tests. Both the new approaches were directly compared to the conventional FSW techniques in terms of resulting microstructures and mechanical responses.https://www.mdpi.com/2075-4701/10/2/233fswaluminum alloysmechanical propertiesnanoindentationmicrostructure |
spellingShingle | Marcello Cabibbo Archimede Forcellese Eleonora Santecchia Chiara Paoletti Stefano Spigarelli Michela Simoncini New Approaches to Friction Stir Welding of Aluminum Light-Alloys Metals fsw aluminum alloys mechanical properties nanoindentation microstructure |
title | New Approaches to Friction Stir Welding of Aluminum Light-Alloys |
title_full | New Approaches to Friction Stir Welding of Aluminum Light-Alloys |
title_fullStr | New Approaches to Friction Stir Welding of Aluminum Light-Alloys |
title_full_unstemmed | New Approaches to Friction Stir Welding of Aluminum Light-Alloys |
title_short | New Approaches to Friction Stir Welding of Aluminum Light-Alloys |
title_sort | new approaches to friction stir welding of aluminum light alloys |
topic | fsw aluminum alloys mechanical properties nanoindentation microstructure |
url | https://www.mdpi.com/2075-4701/10/2/233 |
work_keys_str_mv | AT marcellocabibbo newapproachestofrictionstirweldingofaluminumlightalloys AT archimedeforcellese newapproachestofrictionstirweldingofaluminumlightalloys AT eleonorasantecchia newapproachestofrictionstirweldingofaluminumlightalloys AT chiarapaoletti newapproachestofrictionstirweldingofaluminumlightalloys AT stefanospigarelli newapproachestofrictionstirweldingofaluminumlightalloys AT michelasimoncini newapproachestofrictionstirweldingofaluminumlightalloys |