Confidence-based laboratory test reduction recommendation algorithm
Abstract Background We propose a new deep learning model to identify unnecessary hemoglobin (Hgb) tests for patients admitted to the hospital, which can help reduce health risks and healthcare costs. Methods We collected internal patient data from a teaching hospital in Houston and external patient...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2023-05-01
|
Series: | BMC Medical Informatics and Decision Making |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12911-023-02187-3 |
_version_ | 1827948072683962368 |
---|---|
author | Tongtong Huang Linda T. Li Elmer V. Bernstam Xiaoqian Jiang |
author_facet | Tongtong Huang Linda T. Li Elmer V. Bernstam Xiaoqian Jiang |
author_sort | Tongtong Huang |
collection | DOAJ |
description | Abstract Background We propose a new deep learning model to identify unnecessary hemoglobin (Hgb) tests for patients admitted to the hospital, which can help reduce health risks and healthcare costs. Methods We collected internal patient data from a teaching hospital in Houston and external patient data from the MIMIC III database. The study used a conservative definition of unnecessary laboratory tests, which was defined as stable (i.e., stability) and below the lower normal bound (i.e., normality). Considering that machine learning models may yield less reliable results when trained on noisy inputs containing low-quality information, we estimated prediction confidence to assess the reliability of predicted outcomes. We adopted a “select and predict” design philosophy to maximize prediction performance by selectively considering samples with high prediction confidence for recommendations. Our model accommodated irregularly sampled observational data to make full use of variable correlations (i.e., with other laboratory test values) and temporal dependencies (i.e., previous laboratory tests performed within the same encounter) in selecting candidates for training and prediction. Results The proposed model demonstrated remarkable Hgb prediction performance, achieving a normality AUC of 95.89% and a Hgb stability AUC of 95.94%, while recommending a reduction of 9.91% of Hgb tests that were deemed unnecessary. Additionally, the model could generalize well to external patients admitted to another hospital. Conclusions This study introduces a novel deep learning model with the potential to significantly reduce healthcare costs and improve patient outcomes by identifying unnecessary laboratory tests for hospitalized patients. |
first_indexed | 2024-04-09T12:49:43Z |
format | Article |
id | doaj.art-a95810eff9f34a38b224b406174e8918 |
institution | Directory Open Access Journal |
issn | 1472-6947 |
language | English |
last_indexed | 2024-04-09T12:49:43Z |
publishDate | 2023-05-01 |
publisher | BMC |
record_format | Article |
series | BMC Medical Informatics and Decision Making |
spelling | doaj.art-a95810eff9f34a38b224b406174e89182023-05-14T11:19:00ZengBMCBMC Medical Informatics and Decision Making1472-69472023-05-0123111510.1186/s12911-023-02187-3Confidence-based laboratory test reduction recommendation algorithmTongtong Huang0Linda T. Li1Elmer V. Bernstam2Xiaoqian Jiang3School of Biomedical Informatics, UTHealthSchool of Biomedical Informatics, UTHealthSchool of Biomedical Informatics, UTHealthSchool of Biomedical Informatics, UTHealthAbstract Background We propose a new deep learning model to identify unnecessary hemoglobin (Hgb) tests for patients admitted to the hospital, which can help reduce health risks and healthcare costs. Methods We collected internal patient data from a teaching hospital in Houston and external patient data from the MIMIC III database. The study used a conservative definition of unnecessary laboratory tests, which was defined as stable (i.e., stability) and below the lower normal bound (i.e., normality). Considering that machine learning models may yield less reliable results when trained on noisy inputs containing low-quality information, we estimated prediction confidence to assess the reliability of predicted outcomes. We adopted a “select and predict” design philosophy to maximize prediction performance by selectively considering samples with high prediction confidence for recommendations. Our model accommodated irregularly sampled observational data to make full use of variable correlations (i.e., with other laboratory test values) and temporal dependencies (i.e., previous laboratory tests performed within the same encounter) in selecting candidates for training and prediction. Results The proposed model demonstrated remarkable Hgb prediction performance, achieving a normality AUC of 95.89% and a Hgb stability AUC of 95.94%, while recommending a reduction of 9.91% of Hgb tests that were deemed unnecessary. Additionally, the model could generalize well to external patients admitted to another hospital. Conclusions This study introduces a novel deep learning model with the potential to significantly reduce healthcare costs and improve patient outcomes by identifying unnecessary laboratory tests for hospitalized patients.https://doi.org/10.1186/s12911-023-02187-3Lab test reductionDeep learningConfidence based |
spellingShingle | Tongtong Huang Linda T. Li Elmer V. Bernstam Xiaoqian Jiang Confidence-based laboratory test reduction recommendation algorithm BMC Medical Informatics and Decision Making Lab test reduction Deep learning Confidence based |
title | Confidence-based laboratory test reduction recommendation algorithm |
title_full | Confidence-based laboratory test reduction recommendation algorithm |
title_fullStr | Confidence-based laboratory test reduction recommendation algorithm |
title_full_unstemmed | Confidence-based laboratory test reduction recommendation algorithm |
title_short | Confidence-based laboratory test reduction recommendation algorithm |
title_sort | confidence based laboratory test reduction recommendation algorithm |
topic | Lab test reduction Deep learning Confidence based |
url | https://doi.org/10.1186/s12911-023-02187-3 |
work_keys_str_mv | AT tongtonghuang confidencebasedlaboratorytestreductionrecommendationalgorithm AT lindatli confidencebasedlaboratorytestreductionrecommendationalgorithm AT elmervbernstam confidencebasedlaboratorytestreductionrecommendationalgorithm AT xiaoqianjiang confidencebasedlaboratorytestreductionrecommendationalgorithm |