Summary: | <p>Abstract</p> <p>Background</p> <p>In order to achieve a safe and persistent angiogenic effect, we investigated the potential of bone marrow cells implantation to enhance angiogenesis of ischemic hearts in a rat model, and also we have investigated growth factors accompanying and intermediating the angiogenesis, and the changes occurring in the levels of cytokines and their relations with angiogenesis.</p> <p>Methods</p> <p>30 adult male Wistar albino rats from the same colony were used. After anterior myocardial infarction induced by occlusion of the left anterior descending artery, they were divided into two groups (Group I and Group II). 2 × 10<sup>7 </sup>bone marrow cells suspended in 0.1 ml phosphate-buffered saline solution and 0.1 ml phosphate-buffered saline solution were injected at six points in the infarcted area in Group I and Group II respectively. Changes in the vascular density and, vascular endothelial growth factor, vascular cell adhesion molecule and cytokine levels in the infarcted myocardium after bone marrow cells implantation were examined.</p> <p>Results</p> <p>The implantation assay showed that bone marrow cells induced angiogenesis. Light microscopic analysis of the vascular density in the ischemic area showed that, angiogenesis had been induced to higher in Group I than Group II. Levels of vascular endothelial growth factor, vascular cell adhesion molecule and the inflammatory cytokines such as interleukin-1 and tumor necrosis factor-α in Group I were significantly elevated compared with those in Group II.</p> <p>Conclusion</p> <p>Bone marrow cells implantation induced angiogenesis in a rat ischemic heart model as a result of increase of the levels of vascular endothelial growth factor, vascular cell adhesion molecule, interleukin-1, and tumor necrosis factor-α.</p>
|