Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges

Bicycles are more difficult to control at low speeds due to the vehicle’s unstable low-speed dynamics. This issue might be exacerbated by factors such as aging, disturbances, and multi-tasking. To address this issue, we developed a prototype ‘balance assist system’ with Royal Dutch Gazelle and Bosch...

Full description

Bibliographic Details
Main Authors: Leila Alizadehsaravi, Jason K. Moore
Format: Article
Language:English
Published: PeerJ Inc. 2023-10-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/16206.pdf
_version_ 1797411713931280384
author Leila Alizadehsaravi
Jason K. Moore
author_facet Leila Alizadehsaravi
Jason K. Moore
author_sort Leila Alizadehsaravi
collection DOAJ
description Bicycles are more difficult to control at low speeds due to the vehicle’s unstable low-speed dynamics. This issue might be exacerbated by factors such as aging, disturbances, and multi-tasking. To address this issue, we developed a prototype ‘balance assist system’ with Royal Dutch Gazelle and Bosch eBike Systems at Delft University of Technology, which includes an electric motor capable of providing additional steering torque. We implemented a speed-adaptive feedback controller to generate the additional steering torque to that of the rider. We conducted a study with 18 older and 14 younger cyclists to first examine the effect of aging, disturbances, and multi-tasking on cycling at lower forward speeds, and evaluate the effectiveness of the system in improving the stability of the rider-bicycle system while facing these challenges. The study consisted of two scenarios: a single-task scenario where participants rode the bicycle on a marked narrow straight-line track, and a multi-task scenario where participants performed a shoulder check task and followed visual cues while tracking the straight-line. We introduced handlebar disturbances using the steer motor in half of the trials in both scenarios. All trials were repeated with and without the balance assist system. We calculated the bicycle mean magnitude of roll and steering rate—as indicators of bicycle balance control and required steering actions, respectively—and the rider’s mean magnitude of lean rate with respect to the ground to investigate the effect of the balance assist system on rider’s lateral motion. Our results showed that aging, disturbances, and multi-tasking increased the roll rate, and the balance assist system was able to significantly reduce it. The effect size of the balance assist system in reducing the roll rate across all conditions was found to be larger in older cyclists, indicating a more substantial impact compared to younger cyclists. Disturbances and multi-tasking increased the steering rate, which was successfully reduced by the balance assist system. Aging did not significantly affect the steering rate. The rider’s lean rate was not significantly affected by age, disturbances, or the balance assist, indicating that the upper body plays a minor role when riders have good steering control authority. Overall, our findings suggest that lateral motion and required steering action can be affected by age, multi-tasking, and handlebar disturbances which can endanger cyclists’ safety, and the balance assist system has the potential to improve cycling safety and reduce the incidence of single-actor crashes. Further investigation on riders’ contribution to control actions is required.
first_indexed 2024-03-09T04:50:10Z
format Article
id doaj.art-a968e4e584cc4dacb0c9fff5ae8c7854
institution Directory Open Access Journal
issn 2167-8359
language English
last_indexed 2024-03-09T04:50:10Z
publishDate 2023-10-01
publisher PeerJ Inc.
record_format Article
series PeerJ
spelling doaj.art-a968e4e584cc4dacb0c9fff5ae8c78542023-12-03T13:11:26ZengPeerJ Inc.PeerJ2167-83592023-10-0111e1620610.7717/peerj.16206Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challengesLeila Alizadehsaravi0Jason K. Moore1Biomechatronic and Human-Machine Control Section, Biomechanical Engineering Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, South Holland, The NetherlandsBiomechatronic and Human-Machine Control Section, Biomechanical Engineering Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, South Holland, The NetherlandsBicycles are more difficult to control at low speeds due to the vehicle’s unstable low-speed dynamics. This issue might be exacerbated by factors such as aging, disturbances, and multi-tasking. To address this issue, we developed a prototype ‘balance assist system’ with Royal Dutch Gazelle and Bosch eBike Systems at Delft University of Technology, which includes an electric motor capable of providing additional steering torque. We implemented a speed-adaptive feedback controller to generate the additional steering torque to that of the rider. We conducted a study with 18 older and 14 younger cyclists to first examine the effect of aging, disturbances, and multi-tasking on cycling at lower forward speeds, and evaluate the effectiveness of the system in improving the stability of the rider-bicycle system while facing these challenges. The study consisted of two scenarios: a single-task scenario where participants rode the bicycle on a marked narrow straight-line track, and a multi-task scenario where participants performed a shoulder check task and followed visual cues while tracking the straight-line. We introduced handlebar disturbances using the steer motor in half of the trials in both scenarios. All trials were repeated with and without the balance assist system. We calculated the bicycle mean magnitude of roll and steering rate—as indicators of bicycle balance control and required steering actions, respectively—and the rider’s mean magnitude of lean rate with respect to the ground to investigate the effect of the balance assist system on rider’s lateral motion. Our results showed that aging, disturbances, and multi-tasking increased the roll rate, and the balance assist system was able to significantly reduce it. The effect size of the balance assist system in reducing the roll rate across all conditions was found to be larger in older cyclists, indicating a more substantial impact compared to younger cyclists. Disturbances and multi-tasking increased the steering rate, which was successfully reduced by the balance assist system. Aging did not significantly affect the steering rate. The rider’s lean rate was not significantly affected by age, disturbances, or the balance assist, indicating that the upper body plays a minor role when riders have good steering control authority. Overall, our findings suggest that lateral motion and required steering action can be affected by age, multi-tasking, and handlebar disturbances which can endanger cyclists’ safety, and the balance assist system has the potential to improve cycling safety and reduce the incidence of single-actor crashes. Further investigation on riders’ contribution to control actions is required.https://peerj.com/articles/16206.pdfBalance assistAgingBicycleSafetyBalance controlAssistive technology
spellingShingle Leila Alizadehsaravi
Jason K. Moore
Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges
PeerJ
Balance assist
Aging
Bicycle
Safety
Balance control
Assistive technology
title Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges
title_full Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges
title_fullStr Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges
title_full_unstemmed Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges
title_short Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges
title_sort bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real life safety challenges
topic Balance assist
Aging
Bicycle
Safety
Balance control
Assistive technology
url https://peerj.com/articles/16206.pdf
work_keys_str_mv AT leilaalizadehsaravi bicyclebalanceassistsystemreducesrollandsteeringmotionforyoungandolderbicyclistsduringreallifesafetychallenges
AT jasonkmoore bicyclebalanceassistsystemreducesrollandsteeringmotionforyoungandolderbicyclistsduringreallifesafetychallenges