Precise asymptotics in the law of the iterated logarithm of random fields(随机场重对数律的精确渐近性)
设{X,Xk,k ∈ Zd+,X(i),i ≥ 1}是独立同分布的随机变量序列,且EX = 0,对δ>0,E[X2(log log|X|)1+δ]<∞.令证明了
Main Author: | YUANYu-ze(袁裕泽) |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2005-03-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/zjup/1008-9497.2005.32.2.152-155 |
Similar Items
-
Complete Convergence for Partial Sums of Random Uariables with Multidimensioned Indices(关于多指标变量大数律尾概率级数的完全收敛性)
by: WangWensheng(王文胜)
Published: (1999-04-01) -
非平稳弱负相关随机变量的重对数律(A law of the iterated logarithm for non-stationary weakly negatively associated random vectors)
by: RUANHong-shun(阮宏顺), et al.
Published: (2000-11-01) -
Marcinkiewicz strong laws for weighted sums of fields of i. i. d. random variables(独立同分布随机场加权和的Marcinkiewicz强大数律)
by: LIJie(李杰)
Published: (2005-09-01) -
On the general forms of the convergence rates of law of iterated logarithm in negatively associated random variables(关于NA情况下重对数律收敛速度的一般形式)
by: JIANGDe-yuan(姜德元)
Published: (2003-09-01) -
Law of the iterated logarithm for nonstationary negatively associated random fields(非平稳NA随机变量域的重对数律)
by: HUANGWei(黄炜)
Published: (2003-07-01)