Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition
The paper considers how a film of bismuth ferrite BiFeO<sub>3</sub> (BFO) is formed on a polymeric flexible polyimide substrate at low temperature ALD (250 °C). Two samples of BFO/Polyimide with different thicknesses (42 nm, 77 nm) were studied. As the thickness increases, a crystalline...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/13/1/139 |
Summary: | The paper considers how a film of bismuth ferrite BiFeO<sub>3</sub> (BFO) is formed on a polymeric flexible polyimide substrate at low temperature ALD (250 °C). Two samples of BFO/Polyimide with different thicknesses (42 nm, 77 nm) were studied. As the thickness increases, a crystalline BFO phase with magnetic and electrical properties inherent to a multiferroic is observed. An increase in the film thickness promotes clustering. The competition between the magnetic and electrical subsystems creates an anomalous behavior of the magnetization at a temperature of 200 K. This property is probably related to the multiferroic/polymer interface. This paper explores the prerequisites for the low-temperature growth of BFO films on organic materials as promising structural components for flexible and quantum electronics. |
---|---|
ISSN: | 2079-4991 |