A metrizable semitopological semilattice with non-closed partial order

We construct a metrizable semitopological semilattice X whose partial order P = {(x, y) ∈ X × X : xy = x} is a non-closed dense subset of X × X. As a by-product we find necessary and sufficient conditions for the existence of a (metrizable) Hausdorff topology on a set, act, semigroup or semilattice,...

Full description

Bibliographic Details
Main Authors: Banakh Taras, Bardyla Serhii, Ravsky Alex
Format: Article
Language:English
Published: De Gruyter 2020-04-01
Series:Topological Algebra and its Applications
Subjects:
Online Access:https://doi.org/10.1515/taa-2020-0006
_version_ 1831725300759658496
author Banakh Taras
Bardyla Serhii
Ravsky Alex
author_facet Banakh Taras
Bardyla Serhii
Ravsky Alex
author_sort Banakh Taras
collection DOAJ
description We construct a metrizable semitopological semilattice X whose partial order P = {(x, y) ∈ X × X : xy = x} is a non-closed dense subset of X × X. As a by-product we find necessary and sufficient conditions for the existence of a (metrizable) Hausdorff topology on a set, act, semigroup or semilattice, having a prescribed countable family of convergent sequences.
first_indexed 2024-12-21T04:37:22Z
format Article
id doaj.art-a9725cbee10e417c81cf34c860fc5406
institution Directory Open Access Journal
issn 2299-3231
language English
last_indexed 2024-12-21T04:37:22Z
publishDate 2020-04-01
publisher De Gruyter
record_format Article
series Topological Algebra and its Applications
spelling doaj.art-a9725cbee10e417c81cf34c860fc54062022-12-21T19:15:49ZengDe GruyterTopological Algebra and its Applications2299-32312020-04-0181677510.1515/taa-2020-0006taa-2020-0006A metrizable semitopological semilattice with non-closed partial orderBanakh Taras0Bardyla Serhii1Ravsky Alex2Ivan Franko National University of Lviv (Ukraine) and Jan Kochanowski University in Kielce,PolandInstitute of Mathematics, Kurt Gödel Research Center, Vienna, AustriaDepartment of Analysis, Geometry and Topology, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of UkraineWe construct a metrizable semitopological semilattice X whose partial order P = {(x, y) ∈ X × X : xy = x} is a non-closed dense subset of X × X. As a by-product we find necessary and sufficient conditions for the existence of a (metrizable) Hausdorff topology on a set, act, semigroup or semilattice, having a prescribed countable family of convergent sequences.https://doi.org/10.1515/taa-2020-0006semitopological semilatticepartial orderconvergent sequenceactsemigroup54a2006a1222a2637b05
spellingShingle Banakh Taras
Bardyla Serhii
Ravsky Alex
A metrizable semitopological semilattice with non-closed partial order
Topological Algebra and its Applications
semitopological semilattice
partial order
convergent sequence
act
semigroup
54a20
06a12
22a26
37b05
title A metrizable semitopological semilattice with non-closed partial order
title_full A metrizable semitopological semilattice with non-closed partial order
title_fullStr A metrizable semitopological semilattice with non-closed partial order
title_full_unstemmed A metrizable semitopological semilattice with non-closed partial order
title_short A metrizable semitopological semilattice with non-closed partial order
title_sort metrizable semitopological semilattice with non closed partial order
topic semitopological semilattice
partial order
convergent sequence
act
semigroup
54a20
06a12
22a26
37b05
url https://doi.org/10.1515/taa-2020-0006
work_keys_str_mv AT banakhtaras ametrizablesemitopologicalsemilatticewithnonclosedpartialorder
AT bardylaserhii ametrizablesemitopologicalsemilatticewithnonclosedpartialorder
AT ravskyalex ametrizablesemitopologicalsemilatticewithnonclosedpartialorder
AT banakhtaras metrizablesemitopologicalsemilatticewithnonclosedpartialorder
AT bardylaserhii metrizablesemitopologicalsemilatticewithnonclosedpartialorder
AT ravskyalex metrizablesemitopologicalsemilatticewithnonclosedpartialorder