Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer

Recent sequencing studies have extensively explored the somatic alterations present in the nuclear genomes of cancers. Although mitochondria control energy metabolism and apoptosis, the origins and impact of cancer-associated mutations in mtDNA are unclear. In this study, we analyzed somatic alterat...

Full description

Bibliographic Details
Main Authors: Young Seok Ju, Ludmil B Alexandrov, Moritz Gerstung, Inigo Martincorena, Serena Nik-Zainal, Manasa Ramakrishna, Helen R Davies, Elli Papaemmanuil, Gunes Gundem, Adam Shlien, Niccolo Bolli, Sam Behjati, Patrick S Tarpey, Jyoti Nangalia, Charles E Massie, Adam P Butler, Jon W Teague, George S Vassiliou, Anthony R Green, Ming-Qing Du, Ashwin Unnikrishnan, John E Pimanda, Bin Tean Teh, Nikhil Munshi, Mel Greaves, Paresh Vyas, Adel K El-Naggar, Tom Santarius, V Peter Collins, Richard Grundy, Jack A Taylor, D Neil Hayes, David Malkin, ICGC Breast Cancer Group, ICGC Chronic Myeloid Disorders Group, ICGC Prostate Cancer Group, Christopher S Foster, Anne Y Warren, Hayley C Whitaker, Daniel Brewer, Rosalind Eeles, Colin Cooper, David Neal, Tapio Visakorpi, William B Isaacs, G Steven Bova, Adrienne M Flanagan, P Andrew Futreal, Andy G Lynch, Patrick F Chinnery, Ultan McDermott, Michael R Stratton, Peter J Campbell
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2014-10-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/02935
_version_ 1818018651940323328
author Young Seok Ju
Ludmil B Alexandrov
Moritz Gerstung
Inigo Martincorena
Serena Nik-Zainal
Manasa Ramakrishna
Helen R Davies
Elli Papaemmanuil
Gunes Gundem
Adam Shlien
Niccolo Bolli
Sam Behjati
Patrick S Tarpey
Jyoti Nangalia
Charles E Massie
Adam P Butler
Jon W Teague
George S Vassiliou
Anthony R Green
Ming-Qing Du
Ashwin Unnikrishnan
John E Pimanda
Bin Tean Teh
Nikhil Munshi
Mel Greaves
Paresh Vyas
Adel K El-Naggar
Tom Santarius
V Peter Collins
Richard Grundy
Jack A Taylor
D Neil Hayes
David Malkin
ICGC Breast Cancer Group
ICGC Chronic Myeloid Disorders Group
ICGC Prostate Cancer Group
Christopher S Foster
Anne Y Warren
Hayley C Whitaker
Daniel Brewer
Rosalind Eeles
Colin Cooper
David Neal
Tapio Visakorpi
William B Isaacs
G Steven Bova
Adrienne M Flanagan
P Andrew Futreal
Andy G Lynch
Patrick F Chinnery
Ultan McDermott
Michael R Stratton
Peter J Campbell
author_facet Young Seok Ju
Ludmil B Alexandrov
Moritz Gerstung
Inigo Martincorena
Serena Nik-Zainal
Manasa Ramakrishna
Helen R Davies
Elli Papaemmanuil
Gunes Gundem
Adam Shlien
Niccolo Bolli
Sam Behjati
Patrick S Tarpey
Jyoti Nangalia
Charles E Massie
Adam P Butler
Jon W Teague
George S Vassiliou
Anthony R Green
Ming-Qing Du
Ashwin Unnikrishnan
John E Pimanda
Bin Tean Teh
Nikhil Munshi
Mel Greaves
Paresh Vyas
Adel K El-Naggar
Tom Santarius
V Peter Collins
Richard Grundy
Jack A Taylor
D Neil Hayes
David Malkin
ICGC Breast Cancer Group
ICGC Chronic Myeloid Disorders Group
ICGC Prostate Cancer Group
Christopher S Foster
Anne Y Warren
Hayley C Whitaker
Daniel Brewer
Rosalind Eeles
Colin Cooper
David Neal
Tapio Visakorpi
William B Isaacs
G Steven Bova
Adrienne M Flanagan
P Andrew Futreal
Andy G Lynch
Patrick F Chinnery
Ultan McDermott
Michael R Stratton
Peter J Campbell
author_sort Young Seok Ju
collection DOAJ
description Recent sequencing studies have extensively explored the somatic alterations present in the nuclear genomes of cancers. Although mitochondria control energy metabolism and apoptosis, the origins and impact of cancer-associated mutations in mtDNA are unclear. In this study, we analyzed somatic alterations in mtDNA from 1675 tumors. We identified 1907 somatic substitutions, which exhibited dramatic replicative strand bias, predominantly C > T and A > G on the mitochondrial heavy strand. This strand-asymmetric signature differs from those found in nuclear cancer genomes but matches the inferred germline process shaping primate mtDNA sequence content. A number of mtDNA mutations showed considerable heterogeneity across tumor types. Missense mutations were selectively neutral and often gradually drifted towards homoplasmy over time. In contrast, mutations resulting in protein truncation undergo negative selection and were almost exclusively heteroplasmic. Our findings indicate that the endogenous mutational mechanism has far greater impact than any other external mutagens in mitochondria and is fundamentally linked to mtDNA replication.
first_indexed 2024-04-14T07:42:28Z
format Article
id doaj.art-a97bb2e0fa0f4eb19b17cd3f405b0385
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-14T07:42:28Z
publishDate 2014-10-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-a97bb2e0fa0f4eb19b17cd3f405b03852022-12-22T02:05:27ZengeLife Sciences Publications LtdeLife2050-084X2014-10-01310.7554/eLife.02935Origins and functional consequences of somatic mitochondrial DNA mutations in human cancerYoung Seok Ju0Ludmil B Alexandrov1Moritz Gerstung2Inigo Martincorena3Serena Nik-Zainal4Manasa Ramakrishna5Helen R Davies6Elli Papaemmanuil7Gunes Gundem8Adam Shlien9Niccolo Bolli10Sam Behjati11Patrick S Tarpey12Jyoti Nangalia13Charles E Massie14Adam P Butler15Jon W Teague16George S Vassiliou17Anthony R Green18Ming-Qing Du19Ashwin Unnikrishnan20John E Pimanda21Bin Tean Teh22Nikhil Munshi23Mel Greaves24Paresh Vyas25Adel K El-Naggar26Tom Santarius27V Peter Collins28Richard Grundy29Jack A Taylor30D Neil Hayes31David Malkin32ICGC Breast Cancer Group33ICGC Chronic Myeloid Disorders Group34ICGC Prostate Cancer Group35Christopher S Foster36Anne Y Warren37Hayley C Whitaker38Daniel Brewer39Rosalind Eeles40Colin Cooper41David Neal42Tapio Visakorpi43William B Isaacs44G Steven Bova45Adrienne M Flanagan46P Andrew Futreal47Andy G Lynch48Patrick F Chinnery49Ultan McDermott50Michael R Stratton51Peter J Campbell52Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United KingdomCambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United KingdomCambridge University Hospitals NHS Foundation Trust, Cambridge, United KingdomLowy Cancer Research Centre, University of New South Wales, Sydney, AustraliaLowy Cancer Research Centre, University of New South Wales, Sydney, AustraliaLaboratory of Cancer Epigenome, National Cancer Centre, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, SingaporeDepartment of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, United StatesInstitute of Cancer Research, Sutton, London, United KingdomWeatherall Institute for Molecular Medicine, University of Oxford, Oxford, United KingdomDepartment of Pathology, MD Anderson Cancer Center, Houston, United StatesCambridge University Hospitals NHS Foundation Trust, Cambridge, United KingdomCambridge University Hospitals NHS Foundation Trust, Cambridge, United KingdomChildren's Brain Tumour Research Centre, University of Nottingham, Nottingham, United KingdomNational Institute of Environmental Health Sciences, National Institute of Health, Triangle, North Carolina, United StatesDepartment of Internal Medicine, University of North Carolina, Chapel Hill, United StatesHospital for Sick Children, University of Toronto, Toronto, CanadaCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom; Institute of Cancer Research, Sutton, London, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United KingdomDepartment of Molecular and Clinical Cancer Medicine, University of Liverpool, London, United Kingdom; HCA Pathology Laboratories, London, United KingdomCambridge University Hospitals NHS Foundation Trust, Cambridge, United KingdomCancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United KingdomInstitute of Cancer Research, Sutton, London, United Kingdom; School of Biological Sciences, University of East Anglia, Norwich, United KingdomInstitute of Cancer Research, Sutton, London, United KingdomInstitute of Cancer Research, Sutton, London, United Kingdom; School of Biological Sciences, University of East Anglia, Norwich, United KingdomCancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United KingdomInstitute of Biosciences and Medical Technology - BioMediTech and Fimlab Laboratories, University of Tampere and Tampere University Hospital, Tampere, FinlandDepartment of Oncology, Johns Hopkins University, Baltimore, United StatesInstitute of Biosciences and Medical Technology - BioMediTech and Fimlab Laboratories, University of Tampere and Tampere University Hospital, Tampere, FinlandDepartment of Histopathology, Royal National Orthopaedic Hospital, Middlesex, United Kingdom; University College London Cancer Institute, University College London, London, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom; Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United StatesCancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United KingdomWellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-tyne, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United KingdomCancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United KingdomRecent sequencing studies have extensively explored the somatic alterations present in the nuclear genomes of cancers. Although mitochondria control energy metabolism and apoptosis, the origins and impact of cancer-associated mutations in mtDNA are unclear. In this study, we analyzed somatic alterations in mtDNA from 1675 tumors. We identified 1907 somatic substitutions, which exhibited dramatic replicative strand bias, predominantly C > T and A > G on the mitochondrial heavy strand. This strand-asymmetric signature differs from those found in nuclear cancer genomes but matches the inferred germline process shaping primate mtDNA sequence content. A number of mtDNA mutations showed considerable heterogeneity across tumor types. Missense mutations were selectively neutral and often gradually drifted towards homoplasmy over time. In contrast, mutations resulting in protein truncation undergo negative selection and were almost exclusively heteroplasmic. Our findings indicate that the endogenous mutational mechanism has far greater impact than any other external mutagens in mitochondria and is fundamentally linked to mtDNA replication.https://elifesciences.org/articles/02935mitochondrial DNAsomatic mutationmutational signaturecancer genomeevolutionsequencing
spellingShingle Young Seok Ju
Ludmil B Alexandrov
Moritz Gerstung
Inigo Martincorena
Serena Nik-Zainal
Manasa Ramakrishna
Helen R Davies
Elli Papaemmanuil
Gunes Gundem
Adam Shlien
Niccolo Bolli
Sam Behjati
Patrick S Tarpey
Jyoti Nangalia
Charles E Massie
Adam P Butler
Jon W Teague
George S Vassiliou
Anthony R Green
Ming-Qing Du
Ashwin Unnikrishnan
John E Pimanda
Bin Tean Teh
Nikhil Munshi
Mel Greaves
Paresh Vyas
Adel K El-Naggar
Tom Santarius
V Peter Collins
Richard Grundy
Jack A Taylor
D Neil Hayes
David Malkin
ICGC Breast Cancer Group
ICGC Chronic Myeloid Disorders Group
ICGC Prostate Cancer Group
Christopher S Foster
Anne Y Warren
Hayley C Whitaker
Daniel Brewer
Rosalind Eeles
Colin Cooper
David Neal
Tapio Visakorpi
William B Isaacs
G Steven Bova
Adrienne M Flanagan
P Andrew Futreal
Andy G Lynch
Patrick F Chinnery
Ultan McDermott
Michael R Stratton
Peter J Campbell
Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer
eLife
mitochondrial DNA
somatic mutation
mutational signature
cancer genome
evolution
sequencing
title Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer
title_full Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer
title_fullStr Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer
title_full_unstemmed Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer
title_short Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer
title_sort origins and functional consequences of somatic mitochondrial dna mutations in human cancer
topic mitochondrial DNA
somatic mutation
mutational signature
cancer genome
evolution
sequencing
url https://elifesciences.org/articles/02935
work_keys_str_mv AT youngseokju originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT ludmilbalexandrov originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT moritzgerstung originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT inigomartincorena originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT serenanikzainal originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT manasaramakrishna originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT helenrdavies originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT ellipapaemmanuil originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT gunesgundem originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT adamshlien originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT niccolobolli originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT sambehjati originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT patrickstarpey originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT jyotinangalia originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT charlesemassie originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT adampbutler originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT jonwteague originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT georgesvassiliou originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT anthonyrgreen originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT mingqingdu originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT ashwinunnikrishnan originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT johnepimanda originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT binteanteh originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT nikhilmunshi originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT melgreaves originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT pareshvyas originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT adelkelnaggar originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT tomsantarius originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT vpetercollins originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT richardgrundy originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT jackataylor originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT dneilhayes originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT davidmalkin originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT icgcbreastcancergroup originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT icgcchronicmyeloiddisordersgroup originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT icgcprostatecancergroup originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT christophersfoster originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT anneywarren originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT hayleycwhitaker originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT danielbrewer originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT rosalindeeles originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT colincooper originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT davidneal originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT tapiovisakorpi originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT williambisaacs originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT gstevenbova originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT adriennemflanagan originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT pandrewfutreal originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT andyglynch originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT patrickfchinnery originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT ultanmcdermott originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT michaelrstratton originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer
AT peterjcampbell originsandfunctionalconsequencesofsomaticmitochondrialdnamutationsinhumancancer