On the existence of periodic oscillations for pendulum-type equations

We provide new sufficient conditions for the existence of T-periodic solutions for the ϕ-laplacian pendulum equation (ϕ(x′))′ + k x′ + a sin x = e(t), where e ∈ C͠T. Our main tool is a continuation theorem due to Capietto, Mawhin and Zanolin and we improve or complement previous results in the liter...

Full description

Bibliographic Details
Main Author: Cid J. Ángel
Format: Article
Language:English
Published: De Gruyter 2020-05-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2020-0222
_version_ 1818586486582280192
author Cid J. Ángel
author_facet Cid J. Ángel
author_sort Cid J. Ángel
collection DOAJ
description We provide new sufficient conditions for the existence of T-periodic solutions for the ϕ-laplacian pendulum equation (ϕ(x′))′ + k x′ + a sin x = e(t), where e ∈ C͠T. Our main tool is a continuation theorem due to Capietto, Mawhin and Zanolin and we improve or complement previous results in the literature obtained in the framework of the classical, the relativistic and the curvature pendulum equations.
first_indexed 2024-12-16T08:53:44Z
format Article
id doaj.art-a9813b0e56d84d4a90ba7f7e8e2b19e2
institution Directory Open Access Journal
issn 2191-9496
2191-950X
language English
last_indexed 2024-12-16T08:53:44Z
publishDate 2020-05-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj.art-a9813b0e56d84d4a90ba7f7e8e2b19e22022-12-21T22:37:21ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2020-05-0110112113010.1515/anona-2020-0222anona-2020-0222On the existence of periodic oscillations for pendulum-type equationsCid J. Ángel0Departamento de Matemáticas, Universidade de Vigo, Vigo, Campus de Ourense, 32004, SpainWe provide new sufficient conditions for the existence of T-periodic solutions for the ϕ-laplacian pendulum equation (ϕ(x′))′ + k x′ + a sin x = e(t), where e ∈ C͠T. Our main tool is a continuation theorem due to Capietto, Mawhin and Zanolin and we improve or complement previous results in the literature obtained in the framework of the classical, the relativistic and the curvature pendulum equations.https://doi.org/10.1515/anona-2020-0222periodic solutionϕ-laplacianpendulum equationrelativistic pendulumcontinuation theorem34c25
spellingShingle Cid J. Ángel
On the existence of periodic oscillations for pendulum-type equations
Advances in Nonlinear Analysis
periodic solution
ϕ-laplacian
pendulum equation
relativistic pendulum
continuation theorem
34c25
title On the existence of periodic oscillations for pendulum-type equations
title_full On the existence of periodic oscillations for pendulum-type equations
title_fullStr On the existence of periodic oscillations for pendulum-type equations
title_full_unstemmed On the existence of periodic oscillations for pendulum-type equations
title_short On the existence of periodic oscillations for pendulum-type equations
title_sort on the existence of periodic oscillations for pendulum type equations
topic periodic solution
ϕ-laplacian
pendulum equation
relativistic pendulum
continuation theorem
34c25
url https://doi.org/10.1515/anona-2020-0222
work_keys_str_mv AT cidjangel ontheexistenceofperiodicoscillationsforpendulumtypeequations