Measuring graphene’s Berry phase at $B=0$ T

The Berry phase of wave functions is a key quantity to understand various low-energy properties of matter, among which electric polarisation, orbital magnetism, as well as topological and ultra-relativistic phenomena. Standard approaches to probe the Berry phase in solids rely on the electron dynami...

Full description

Bibliographic Details
Main Authors: Dutreix, Clément, González-Herrero, Hector, Brihuega, Ivan, Katsnelson, Mikhail I., Chapelier, Claude, Renard, Vincent T.
Format: Article
Language:English
Published: Académie des sciences 2021-09-01
Series:Comptes Rendus. Physique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.79/
_version_ 1797651401042558976
author Dutreix, Clément
González-Herrero, Hector
Brihuega, Ivan
Katsnelson, Mikhail I.
Chapelier, Claude
Renard, Vincent T.
author_facet Dutreix, Clément
González-Herrero, Hector
Brihuega, Ivan
Katsnelson, Mikhail I.
Chapelier, Claude
Renard, Vincent T.
author_sort Dutreix, Clément
collection DOAJ
description The Berry phase of wave functions is a key quantity to understand various low-energy properties of matter, among which electric polarisation, orbital magnetism, as well as topological and ultra-relativistic phenomena. Standard approaches to probe the Berry phase in solids rely on the electron dynamics in response to electromagnetic forces. In graphene, probing the Berry phase $\pi $ of the massless relativistic electrons requires an external magnetic field. Here, we show that the Berry phase also affects the static response of the electrons to a single atomic scatterer, through wavefront dislocations in the surrounding standing-wave interference. This provides a new experimental method to measure the graphene Berry phase in the absence of any magnetic field and demonstrates that local disorder can be exploited as probe of topological quantum matter in scanning tunnelling microscopy experiments.
first_indexed 2024-03-11T16:15:24Z
format Article
id doaj.art-a98699ad691c491c837a896811fdf50b
institution Directory Open Access Journal
issn 1878-1535
language English
last_indexed 2024-03-11T16:15:24Z
publishDate 2021-09-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Physique
spelling doaj.art-a98699ad691c491c837a896811fdf50b2023-10-24T14:21:56ZengAcadémie des sciencesComptes Rendus. Physique1878-15352021-09-0122S413314310.5802/crphys.7910.5802/crphys.79Measuring graphene’s Berry phase at $B=0$ TDutreix, Clément0https://orcid.org/0000-0002-7557-7838González-Herrero, Hector1https://orcid.org/0000-0002-3028-9875Brihuega, Ivan2https://orcid.org/0000-0001-5032-9304Katsnelson, Mikhail I.3https://orcid.org/0000-0001-5165-7553Chapelier, Claude4Renard, Vincent T.5https://orcid.org/0000-0001-6242-9468Université de Bordeaux, France and CNRS, LOMA, UMR 5798, Talence, F-33400, FranceDepartamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, SpainDepartamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, SpainRadboud University, Institute for Molecules and Materials, Nijmegen, The NetherlandsUniv. Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, F-38000 Grenoble, FranceUniv. Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, F-38000 Grenoble, FranceThe Berry phase of wave functions is a key quantity to understand various low-energy properties of matter, among which electric polarisation, orbital magnetism, as well as topological and ultra-relativistic phenomena. Standard approaches to probe the Berry phase in solids rely on the electron dynamics in response to electromagnetic forces. In graphene, probing the Berry phase $\pi $ of the massless relativistic electrons requires an external magnetic field. Here, we show that the Berry phase also affects the static response of the electrons to a single atomic scatterer, through wavefront dislocations in the surrounding standing-wave interference. This provides a new experimental method to measure the graphene Berry phase in the absence of any magnetic field and demonstrates that local disorder can be exploited as probe of topological quantum matter in scanning tunnelling microscopy experiments.https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.79/Berry phaseGrapheneSTMWavefront dislocationsTopologyAtomic defect
spellingShingle Dutreix, Clément
González-Herrero, Hector
Brihuega, Ivan
Katsnelson, Mikhail I.
Chapelier, Claude
Renard, Vincent T.
Measuring graphene’s Berry phase at $B=0$ T
Comptes Rendus. Physique
Berry phase
Graphene
STM
Wavefront dislocations
Topology
Atomic defect
title Measuring graphene’s Berry phase at $B=0$ T
title_full Measuring graphene’s Berry phase at $B=0$ T
title_fullStr Measuring graphene’s Berry phase at $B=0$ T
title_full_unstemmed Measuring graphene’s Berry phase at $B=0$ T
title_short Measuring graphene’s Berry phase at $B=0$ T
title_sort measuring graphene s berry phase at b 0 t
topic Berry phase
Graphene
STM
Wavefront dislocations
Topology
Atomic defect
url https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.79/
work_keys_str_mv AT dutreixclement measuringgraphenesberryphaseatb0t
AT gonzalezherrerohector measuringgraphenesberryphaseatb0t
AT brihuegaivan measuringgraphenesberryphaseatb0t
AT katsnelsonmikhaili measuringgraphenesberryphaseatb0t
AT chapelierclaude measuringgraphenesberryphaseatb0t
AT renardvincentt measuringgraphenesberryphaseatb0t