Summary: | Robust prediction of Alzheimer’s disease (AD) helps in the early diagnosis of AD and may support the treatment of AD patients. In this study, for early detection of AD and prediction of mild cognitive impairment (MCI) conversion, we develop an automatic computer-aided diagnosis (CAD) framework based on a merit-based feature selection method through a whole-brain voxel-wise analysis using baseline magnetic resonance imaging (MRI) data. We also explore the impact of different MRI spatial resolution on the voxel-wise metric AD classification and MCI conversion prediction. We assessed the proposed CAD framework using the whole-brain voxel-wise MRI features of 507 J-ADNI participants (146 healthy controls [HCs], 102 individuals with stable MCI [sMCI], 112 with progressive MCI [pMCI], and 147 with AD) among four clinically relevant pairs of diagnostic groups at different imaging resolutions (i.e., 2, 4, 8, and 16 mm). Using a support vector machine classifier through a 10-fold cross-validation strategy at a spatial resolution of 2 mm, the proposed CAD framework yielded classification accuracies of 91.13%, 74.77%, 81.12%, and 81.78% in identifying AD/healthy control, sMCI/pMCI, sMCI/AD, and pMCI/HC, respectively. The experimental results show that a lower spatial resolution (i.e., 2 mm) may provide more robust information to trace the neuronal loss-related brain atrophy in AD.
|