Data cloning: Maximum likelihood estimation of DSGE models

We present evidence supporting the use of the data cloning method for maximum likelihood estimation of Dynamic Stochastic General Equilibrium models. In the data cloning method, maximum likelihood estimators are obtained as the limit of Bayesian estimators, enjoying the computational advantages of M...

Full description

Bibliographic Details
Main Authors: Luiz Gustavo C. Furlani, Márcio P. Laurini, Marcelo S. Portugal
Format: Article
Language:English
Published: Elsevier 2020-08-01
Series:Results in Applied Mathematics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590037420300315
_version_ 1819225786289225728
author Luiz Gustavo C. Furlani
Márcio P. Laurini
Marcelo S. Portugal
author_facet Luiz Gustavo C. Furlani
Márcio P. Laurini
Marcelo S. Portugal
author_sort Luiz Gustavo C. Furlani
collection DOAJ
description We present evidence supporting the use of the data cloning method for maximum likelihood estimation of Dynamic Stochastic General Equilibrium models. In the data cloning method, maximum likelihood estimators are obtained as the limit of Bayesian estimators, enjoying the computational advantages of MCMC methods. We present evidences that this method is more robust to initial values than the traditional likelihood estimators in this problem.
first_indexed 2024-12-23T10:15:08Z
format Article
id doaj.art-a9a2c8c749374de1964a5be6026f4821
institution Directory Open Access Journal
issn 2590-0374
language English
last_indexed 2024-12-23T10:15:08Z
publishDate 2020-08-01
publisher Elsevier
record_format Article
series Results in Applied Mathematics
spelling doaj.art-a9a2c8c749374de1964a5be6026f48212022-12-21T17:50:51ZengElsevierResults in Applied Mathematics2590-03742020-08-017100121Data cloning: Maximum likelihood estimation of DSGE modelsLuiz Gustavo C. Furlani0Márcio P. Laurini1Marcelo S. Portugal2UFRGS, BrazilFEARP-USP, Brazil; CNPq, Brazil; Correspondence to: Av. dos Bandeirantes 3900, 14040-905, Ribeirão Preto, SP, Brazil.UFRGS, Brazil; CNPq, BrazilWe present evidence supporting the use of the data cloning method for maximum likelihood estimation of Dynamic Stochastic General Equilibrium models. In the data cloning method, maximum likelihood estimators are obtained as the limit of Bayesian estimators, enjoying the computational advantages of MCMC methods. We present evidences that this method is more robust to initial values than the traditional likelihood estimators in this problem.http://www.sciencedirect.com/science/article/pii/S2590037420300315Likelihood estimationDynamic Stochastic General EquilibriumBayesian asymptotics
spellingShingle Luiz Gustavo C. Furlani
Márcio P. Laurini
Marcelo S. Portugal
Data cloning: Maximum likelihood estimation of DSGE models
Results in Applied Mathematics
Likelihood estimation
Dynamic Stochastic General Equilibrium
Bayesian asymptotics
title Data cloning: Maximum likelihood estimation of DSGE models
title_full Data cloning: Maximum likelihood estimation of DSGE models
title_fullStr Data cloning: Maximum likelihood estimation of DSGE models
title_full_unstemmed Data cloning: Maximum likelihood estimation of DSGE models
title_short Data cloning: Maximum likelihood estimation of DSGE models
title_sort data cloning maximum likelihood estimation of dsge models
topic Likelihood estimation
Dynamic Stochastic General Equilibrium
Bayesian asymptotics
url http://www.sciencedirect.com/science/article/pii/S2590037420300315
work_keys_str_mv AT luizgustavocfurlani datacloningmaximumlikelihoodestimationofdsgemodels
AT marcioplaurini datacloningmaximumlikelihoodestimationofdsgemodels
AT marcelosportugal datacloningmaximumlikelihoodestimationofdsgemodels