High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites
Using finite-temperature phonon calculations and machine-learning methods, we assess the mechanical stability of about 400 semiconducting oxides and fluorides with cubic perovskite structures at 0, 300, and 1000 K. We find 92 mechanically stable compounds at high temperatures—including 36 not mentio...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2016-12-01
|
Series: | Physical Review X |
Online Access: | http://doi.org/10.1103/PhysRevX.6.041061 |
_version_ | 1818401243282800640 |
---|---|
author | Ambroise van Roekeghem Jesús Carrete Corey Oses Stefano Curtarolo Natalio Mingo |
author_facet | Ambroise van Roekeghem Jesús Carrete Corey Oses Stefano Curtarolo Natalio Mingo |
author_sort | Ambroise van Roekeghem |
collection | DOAJ |
description | Using finite-temperature phonon calculations and machine-learning methods, we assess the mechanical stability of about 400 semiconducting oxides and fluorides with cubic perovskite structures at 0, 300, and 1000 K. We find 92 mechanically stable compounds at high temperatures—including 36 not mentioned in the literature so far—for which we calculate the thermal conductivity. We show that the thermal conductivity is generally smaller in fluorides than in oxides, largely due to a lower ionic charge, and describe simple structural descriptors that are correlated with its magnitude. Furthermore, we show that the thermal conductivities of most cubic perovskites decrease more slowly than the usual T^{−1} behavior. Within this set, we also screen for materials exhibiting negative thermal expansion. Finally, we describe a strategy to accelerate the discovery of mechanically stable compounds at high temperatures. |
first_indexed | 2024-12-14T07:49:22Z |
format | Article |
id | doaj.art-a9b8a120f4ab4c04ba2d4161fbbe0508 |
institution | Directory Open Access Journal |
issn | 2160-3308 |
language | English |
last_indexed | 2024-12-14T07:49:22Z |
publishDate | 2016-12-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review X |
spelling | doaj.art-a9b8a120f4ab4c04ba2d4161fbbe05082022-12-21T23:10:46ZengAmerican Physical SocietyPhysical Review X2160-33082016-12-016404106110.1103/PhysRevX.6.041061High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride PerovskitesAmbroise van RoekeghemJesús CarreteCorey OsesStefano CurtaroloNatalio MingoUsing finite-temperature phonon calculations and machine-learning methods, we assess the mechanical stability of about 400 semiconducting oxides and fluorides with cubic perovskite structures at 0, 300, and 1000 K. We find 92 mechanically stable compounds at high temperatures—including 36 not mentioned in the literature so far—for which we calculate the thermal conductivity. We show that the thermal conductivity is generally smaller in fluorides than in oxides, largely due to a lower ionic charge, and describe simple structural descriptors that are correlated with its magnitude. Furthermore, we show that the thermal conductivities of most cubic perovskites decrease more slowly than the usual T^{−1} behavior. Within this set, we also screen for materials exhibiting negative thermal expansion. Finally, we describe a strategy to accelerate the discovery of mechanically stable compounds at high temperatures.http://doi.org/10.1103/PhysRevX.6.041061 |
spellingShingle | Ambroise van Roekeghem Jesús Carrete Corey Oses Stefano Curtarolo Natalio Mingo High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites Physical Review X |
title | High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites |
title_full | High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites |
title_fullStr | High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites |
title_full_unstemmed | High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites |
title_short | High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites |
title_sort | high throughput computation of thermal conductivity of high temperature solid phases the case of oxide and fluoride perovskites |
url | http://doi.org/10.1103/PhysRevX.6.041061 |
work_keys_str_mv | AT ambroisevanroekeghem highthroughputcomputationofthermalconductivityofhightemperaturesolidphasesthecaseofoxideandfluorideperovskites AT jesuscarrete highthroughputcomputationofthermalconductivityofhightemperaturesolidphasesthecaseofoxideandfluorideperovskites AT coreyoses highthroughputcomputationofthermalconductivityofhightemperaturesolidphasesthecaseofoxideandfluorideperovskites AT stefanocurtarolo highthroughputcomputationofthermalconductivityofhightemperaturesolidphasesthecaseofoxideandfluorideperovskites AT nataliomingo highthroughputcomputationofthermalconductivityofhightemperaturesolidphasesthecaseofoxideandfluorideperovskites |