Towards the Discovery of Influencers to Follow in Micro-Blogs (Twitter) by Detecting Topics in Posted Messages (Tweets)

Micro-blogs, such as Twitter, have become important tools to share opinions and information among users. Messages concerning any topic are daily posted. A message posted by a given user reaches all the users that decided to follow her/him. Some users post many messages, because they aim at being rec...

Full description

Bibliographic Details
Main Authors: Mubashir Ali, Anees Baqir, Giuseppe Psaila, Sayyam Malik
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/16/5715
Description
Summary:Micro-blogs, such as Twitter, have become important tools to share opinions and information among users. Messages concerning any topic are daily posted. A message posted by a given user reaches all the users that decided to follow her/him. Some users post many messages, because they aim at being recognized as influencers, typically on specific topics. How a user can discover influencers concerned with her/his interest? Micro-blog apps and web sites lack a functionality to recommend users with influencers, on the basis of the content of posted messages. In this paper, we envision such a scenario and we identify the problem that constitutes the basic brick for developing a recommender of (possibly influencer) users: training a classification model by exploiting messages labeled with topical classes, so as this model can be used to classify unlabeled messages, to let the hidden topic they talk about emerge. Specifically, the paper reports the investigation activity we performed to demonstrate the suitability of our idea. To perform the investigation, we developed an investigation framework that exploits various patterns for extracting features from within messages (labeled with topical classes) in conjunction with the mostly-used classifiers for text classification problems. By means of the investigation framework, we were able to perform a large pool of experiments, that allowed us to evaluate all the combinations of feature patterns with classifiers. By means of a cost-benefit function called “Suitability”, that combines accuracy with execution time, we were able to demonstrate that a technique for discovering topics from within messages suitable for the application context is available.
ISSN:2076-3417