Brauer-Schur functions
A new class of functions is studied. We define the Brauer-Schur functions $B^{(p)}_{\lambda}$ for a prime number $p$, and investigate their properties. We construct a basis for the space of symmetric functions, which consists of products of $p$-Brauer-Schur functions and Schur functions. We will see...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Discrete Mathematics & Theoretical Computer Science
2009-01-01
|
Series: | Discrete Mathematics & Theoretical Computer Science |
Subjects: | |
Online Access: | https://dmtcs.episciences.org/2730/pdf |
Summary: | A new class of functions is studied. We define the Brauer-Schur functions $B^{(p)}_{\lambda}$ for a prime number $p$, and investigate their properties. We construct a basis for the space of symmetric functions, which consists of products of $p$-Brauer-Schur functions and Schur functions. We will see that the transition matrix from the natural Schur function basis has some interesting numerical properties. |
---|---|
ISSN: | 1365-8050 |