Metaheuristic-Based Hyperparameter Tuning for Recurrent Deep Learning: Application to the Prediction of Solar Energy Generation

As solar energy generation has become more and more important for the economies of numerous countries in the last couple of decades, it is highly important to build accurate models for forecasting the amount of green energy that will be produced. Numerous recurrent deep learning approaches, mainly b...

Full description

Bibliographic Details
Main Authors: Catalin Stoean, Miodrag Zivkovic, Aleksandra Bozovic, Nebojsa Bacanin, Roma Strulak-Wójcikiewicz, Milos Antonijevic, Ruxandra Stoean
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/3/266
Description
Summary:As solar energy generation has become more and more important for the economies of numerous countries in the last couple of decades, it is highly important to build accurate models for forecasting the amount of green energy that will be produced. Numerous recurrent deep learning approaches, mainly based on long short-term memory (LSTM), are proposed for dealing with such problems, but the most accurate models may differ from one test case to another with respect to architecture and hyperparameters. In the current study, the use of an LSTM and a bidirectional LSTM (BiLSTM) is proposed for dealing with a data collection that, besides the time series values denoting the solar energy generation, also comprises corresponding information about the weather. The proposed research additionally endows the models with hyperparameter tuning by means of an enhanced version of a recently proposed metaheuristic, the reptile search algorithm (RSA). The output of the proposed tuned recurrent neural network models is compared to the ones of several other state-of-the-art metaheuristic optimization approaches that are applied for the same task, using the same experimental setup, and the obtained results indicate the proposed approach as the better alternative. Moreover, the best recurrent model achieved the best results with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> of 0.604, and a normalized MSE value of 0.014, which yields an improvement of around 13% over traditional machine learning models.
ISSN:2075-1680