Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies

We study normalising reduction strategies for infinitary Combinatory Reduction Systems (iCRSs). We prove that all fair, outermost-fair, and needed-fair strategies are normalising for orthogonal, fully-extended iCRSs. These facts properly generalise a number of results on normalising strategies in fi...

Full description

Bibliographic Details
Main Authors: Jeroen Ketema, Jakob Grue Simonsen
Format: Article
Language:English
Published: Logical Methods in Computer Science e.V. 2010-02-01
Series:Logical Methods in Computer Science
Subjects:
Online Access:https://lmcs.episciences.org/841/pdf
_version_ 1797268783001239552
author Jeroen Ketema
Jakob Grue Simonsen
author_facet Jeroen Ketema
Jakob Grue Simonsen
author_sort Jeroen Ketema
collection DOAJ
description We study normalising reduction strategies for infinitary Combinatory Reduction Systems (iCRSs). We prove that all fair, outermost-fair, and needed-fair strategies are normalising for orthogonal, fully-extended iCRSs. These facts properly generalise a number of results on normalising strategies in first-order infinitary rewriting and provide the first examples of normalising strategies for infinitary lambda calculus.
first_indexed 2024-04-25T01:37:58Z
format Article
id doaj.art-a9da3cda982a4ad18204762ddca38577
institution Directory Open Access Journal
issn 1860-5974
language English
last_indexed 2024-04-25T01:37:58Z
publishDate 2010-02-01
publisher Logical Methods in Computer Science e.V.
record_format Article
series Logical Methods in Computer Science
spelling doaj.art-a9da3cda982a4ad18204762ddca385772024-03-08T09:10:33ZengLogical Methods in Computer Science e.V.Logical Methods in Computer Science1860-59742010-02-01Volume 6, Issue 110.2168/LMCS-6(1:7)2010841Infinitary Combinatory Reduction Systems: Normalising Reduction StrategiesJeroen KetemaJakob Grue SimonsenWe study normalising reduction strategies for infinitary Combinatory Reduction Systems (iCRSs). We prove that all fair, outermost-fair, and needed-fair strategies are normalising for orthogonal, fully-extended iCRSs. These facts properly generalise a number of results on normalising strategies in first-order infinitary rewriting and provide the first examples of normalising strategies for infinitary lambda calculus.https://lmcs.episciences.org/841/pdfcomputer science - logic in computer scienced.3.1f.3.2f.4.1f.4.2
spellingShingle Jeroen Ketema
Jakob Grue Simonsen
Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies
Logical Methods in Computer Science
computer science - logic in computer science
d.3.1
f.3.2
f.4.1
f.4.2
title Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies
title_full Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies
title_fullStr Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies
title_full_unstemmed Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies
title_short Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies
title_sort infinitary combinatory reduction systems normalising reduction strategies
topic computer science - logic in computer science
d.3.1
f.3.2
f.4.1
f.4.2
url https://lmcs.episciences.org/841/pdf
work_keys_str_mv AT jeroenketema infinitarycombinatoryreductionsystemsnormalisingreductionstrategies
AT jakobgruesimonsen infinitarycombinatoryreductionsystemsnormalisingreductionstrategies