Low-Light Image Enhancement Method for Electric Power Operation Sites Considering Strong Light Suppression
Insufficient light, uneven light, backlighting, and other problems lead to poor visibility of the image of an electric power operation site. Most of the current methods directly enhance the low-light image while ignoring local strong light that may appear in the electric power operation site, result...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-08-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/13/17/9645 |
_version_ | 1797582885805359104 |
---|---|
author | Yang Xi Zihao Zhang Wenjing Wang |
author_facet | Yang Xi Zihao Zhang Wenjing Wang |
author_sort | Yang Xi |
collection | DOAJ |
description | Insufficient light, uneven light, backlighting, and other problems lead to poor visibility of the image of an electric power operation site. Most of the current methods directly enhance the low-light image while ignoring local strong light that may appear in the electric power operation site, resulting in overexposure and a poor enhancement effect. Aiming at the above problems, we propose a low-light image enhancement method for electric power operation sites by considering strong light suppression. Firstly, a sliding-window-based strong light judgment method was designed, which used a sliding window to segment the image, and a brightness judgment was performed based on the average value of the deviation and the average deviation of the subimages of the grayscale image from the strong light threshold. Then, a light effect decomposition method based on a layer decomposition network was used to decompose the light effect of RGB images with the presence of strong light and eliminate the light effect layer. Finally, a Zero-DCE (Zero-Reference Deep Curve Estimation) low-light enhancement network based on a kernel selection module was constructed to enhance the low-light images with reduced or no strong light interference. Comparison experiments using the electric power operation private dataset and the SICE (Single Image Contrast Enhancement) Part 2 public dataset showed that our proposed method outperformed the current state-of-the-art low-light enhancement methods in terms of both subjective visual effects and objective evaluation metrics, which effectively improves the image quality of electric power operation sites in low-light environments and provides excellent image bases for other computer vision tasks, such as the estimation of operators’ posture. |
first_indexed | 2024-03-10T23:27:54Z |
format | Article |
id | doaj.art-a9da705625c146c3a2527c9c825a1a95 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-10T23:27:54Z |
publishDate | 2023-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-a9da705625c146c3a2527c9c825a1a952023-11-19T07:49:53ZengMDPI AGApplied Sciences2076-34172023-08-011317964510.3390/app13179645Low-Light Image Enhancement Method for Electric Power Operation Sites Considering Strong Light SuppressionYang Xi0Zihao Zhang1Wenjing Wang2School of Computer Science, Northeast Electric Power University, Jilin 132012, ChinaSchool of Computer Science, Northeast Electric Power University, Jilin 132012, ChinaSchool of Computer Science, Northeast Electric Power University, Jilin 132012, ChinaInsufficient light, uneven light, backlighting, and other problems lead to poor visibility of the image of an electric power operation site. Most of the current methods directly enhance the low-light image while ignoring local strong light that may appear in the electric power operation site, resulting in overexposure and a poor enhancement effect. Aiming at the above problems, we propose a low-light image enhancement method for electric power operation sites by considering strong light suppression. Firstly, a sliding-window-based strong light judgment method was designed, which used a sliding window to segment the image, and a brightness judgment was performed based on the average value of the deviation and the average deviation of the subimages of the grayscale image from the strong light threshold. Then, a light effect decomposition method based on a layer decomposition network was used to decompose the light effect of RGB images with the presence of strong light and eliminate the light effect layer. Finally, a Zero-DCE (Zero-Reference Deep Curve Estimation) low-light enhancement network based on a kernel selection module was constructed to enhance the low-light images with reduced or no strong light interference. Comparison experiments using the electric power operation private dataset and the SICE (Single Image Contrast Enhancement) Part 2 public dataset showed that our proposed method outperformed the current state-of-the-art low-light enhancement methods in terms of both subjective visual effects and objective evaluation metrics, which effectively improves the image quality of electric power operation sites in low-light environments and provides excellent image bases for other computer vision tasks, such as the estimation of operators’ posture.https://www.mdpi.com/2076-3417/13/17/9645low-light image enhancementstrong light judgmentlight decompositionZero-DCEelectric power operation environment |
spellingShingle | Yang Xi Zihao Zhang Wenjing Wang Low-Light Image Enhancement Method for Electric Power Operation Sites Considering Strong Light Suppression Applied Sciences low-light image enhancement strong light judgment light decomposition Zero-DCE electric power operation environment |
title | Low-Light Image Enhancement Method for Electric Power Operation Sites Considering Strong Light Suppression |
title_full | Low-Light Image Enhancement Method for Electric Power Operation Sites Considering Strong Light Suppression |
title_fullStr | Low-Light Image Enhancement Method for Electric Power Operation Sites Considering Strong Light Suppression |
title_full_unstemmed | Low-Light Image Enhancement Method for Electric Power Operation Sites Considering Strong Light Suppression |
title_short | Low-Light Image Enhancement Method for Electric Power Operation Sites Considering Strong Light Suppression |
title_sort | low light image enhancement method for electric power operation sites considering strong light suppression |
topic | low-light image enhancement strong light judgment light decomposition Zero-DCE electric power operation environment |
url | https://www.mdpi.com/2076-3417/13/17/9645 |
work_keys_str_mv | AT yangxi lowlightimageenhancementmethodforelectricpoweroperationsitesconsideringstronglightsuppression AT zihaozhang lowlightimageenhancementmethodforelectricpoweroperationsitesconsideringstronglightsuppression AT wenjingwang lowlightimageenhancementmethodforelectricpoweroperationsitesconsideringstronglightsuppression |