An Effective Method for Snow-Cover Mapping of Dense Coniferous Forests in the Upper Heihe River Basin Using Landsat Operational Land Imager Data

The Normalized Difference Snow Index (NDSI) is an effective index for snow-cover mapping at large scales, but in forested regions the identification accuracy for snow using the NDSI is low because of forest cover effects. In this study, typical evergreen coniferous forest zones on Qilian Mountain in...

Full description

Bibliographic Details
Main Authors: Xiao-Yan Wang, Jian Wang, Zhi-Yong Jiang, Hong-Yi Li, Xiao-Hua Hao
Format: Article
Language:English
Published: MDPI AG 2015-12-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/7/12/15882
Description
Summary:The Normalized Difference Snow Index (NDSI) is an effective index for snow-cover mapping at large scales, but in forested regions the identification accuracy for snow using the NDSI is low because of forest cover effects. In this study, typical evergreen coniferous forest zones on Qilian Mountain in the Upper Heihe River Basin (UHRB) were chosen as example regions. By analyzing the spectral signature of snow-covered and snow-free evergreen coniferous forests with Landsat Operational Land Imager (OLI) data, a novel spectral band ratio using near-infrared (NIR) and shortwave infrared (SWIR) bands, defined as (ρnir − ρswir)/(ρnir + ρswir), is proposed. Our research shows that this band ratio, named the normalized difference forest snow index (NDFSI), can be used to effectively distinguish snow-covered evergreen coniferous forests from snow-free evergreen coniferous forests in UHRB.
ISSN:2072-4292