An empirical study of problems and evaluation of IoT malware classification label sources
With the proliferation of malware on IoT devices, research on IoT malicious code has also become more mature. Most studies use learning models to detect or classify malware. Therefore, ensuring high-quality labels for malware samples is crucial to maintaining research accuracy. Researchers typically...
主要な著者: | Tianwei Lei, Jingfeng Xue, Yong Wang, Thar Baker, Zequn Niu |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Elsevier
2024-01-01
|
シリーズ: | Journal of King Saud University: Computer and Information Sciences |
主題: | |
オンライン・アクセス: | http://www.sciencedirect.com/science/article/pii/S1319157823004524 |
類似資料
-
Design of Automation Environment for Analyzing Various IoT Malware
著者:: Sungwon Lee, 等
出版事項: (2021-01-01) -
A Study on the Digital Forensic Investigation Method of Clever Malware in IoT Devices
著者:: Dohyun Kim, 等
出版事項: (2020-01-01) -
Sumav: Fully automated malware labeling
著者:: Sangwon Kim, 等
出版事項: (2022-12-01) -
Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics
著者:: Sai Manoj Pudukotai Dinakarrao, 等
出版事項: (2020-01-01) -
Dynamic Analysis for IoT Malware Detection With Convolution Neural Network Model
著者:: Jueun Jeon, 等
出版事項: (2020-01-01)