An empirical study of problems and evaluation of IoT malware classification label sources
With the proliferation of malware on IoT devices, research on IoT malicious code has also become more mature. Most studies use learning models to detect or classify malware. Therefore, ensuring high-quality labels for malware samples is crucial to maintaining research accuracy. Researchers typically...
المؤلفون الرئيسيون: | Tianwei Lei, Jingfeng Xue, Yong Wang, Thar Baker, Zequn Niu |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Elsevier
2024-01-01
|
سلاسل: | Journal of King Saud University: Computer and Information Sciences |
الموضوعات: | |
الوصول للمادة أونلاين: | http://www.sciencedirect.com/science/article/pii/S1319157823004524 |
مواد مشابهة
-
Design of Automation Environment for Analyzing Various IoT Malware
حسب: Sungwon Lee, وآخرون
منشور في: (2021-01-01) -
A Study on the Digital Forensic Investigation Method of Clever Malware in IoT Devices
حسب: Dohyun Kim, وآخرون
منشور في: (2020-01-01) -
Sumav: Fully automated malware labeling
حسب: Sangwon Kim, وآخرون
منشور في: (2022-12-01) -
Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics
حسب: Sai Manoj Pudukotai Dinakarrao, وآخرون
منشور في: (2020-01-01) -
Dynamic Analysis for IoT Malware Detection With Convolution Neural Network Model
حسب: Jueun Jeon, وآخرون
منشور في: (2020-01-01)