An empirical study of problems and evaluation of IoT malware classification label sources
With the proliferation of malware on IoT devices, research on IoT malicious code has also become more mature. Most studies use learning models to detect or classify malware. Therefore, ensuring high-quality labels for malware samples is crucial to maintaining research accuracy. Researchers typically...
Autors principals: | Tianwei Lei, Jingfeng Xue, Yong Wang, Thar Baker, Zequn Niu |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
Elsevier
2024-01-01
|
Col·lecció: | Journal of King Saud University: Computer and Information Sciences |
Matèries: | |
Accés en línia: | http://www.sciencedirect.com/science/article/pii/S1319157823004524 |
Ítems similars
-
Design of Automation Environment for Analyzing Various IoT Malware
per: Sungwon Lee, et al.
Publicat: (2021-01-01) -
A Study on the Digital Forensic Investigation Method of Clever Malware in IoT Devices
per: Dohyun Kim, et al.
Publicat: (2020-01-01) -
Sumav: Fully automated malware labeling
per: Sangwon Kim, et al.
Publicat: (2022-12-01) -
Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics
per: Sai Manoj Pudukotai Dinakarrao, et al.
Publicat: (2020-01-01) -
Dynamic Analysis for IoT Malware Detection With Convolution Neural Network Model
per: Jueun Jeon, et al.
Publicat: (2020-01-01)