An empirical study of problems and evaluation of IoT malware classification label sources
With the proliferation of malware on IoT devices, research on IoT malicious code has also become more mature. Most studies use learning models to detect or classify malware. Therefore, ensuring high-quality labels for malware samples is crucial to maintaining research accuracy. Researchers typically...
Hlavní autoři: | Tianwei Lei, Jingfeng Xue, Yong Wang, Thar Baker, Zequn Niu |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Elsevier
2024-01-01
|
Edice: | Journal of King Saud University: Computer and Information Sciences |
Témata: | |
On-line přístup: | http://www.sciencedirect.com/science/article/pii/S1319157823004524 |
Podobné jednotky
-
Design of Automation Environment for Analyzing Various IoT Malware
Autor: Sungwon Lee, a další
Vydáno: (2021-01-01) -
A Study on the Digital Forensic Investigation Method of Clever Malware in IoT Devices
Autor: Dohyun Kim, a další
Vydáno: (2020-01-01) -
Sumav: Fully automated malware labeling
Autor: Sangwon Kim, a další
Vydáno: (2022-12-01) -
Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics
Autor: Sai Manoj Pudukotai Dinakarrao, a další
Vydáno: (2020-01-01) -
Dynamic Analysis for IoT Malware Detection With Convolution Neural Network Model
Autor: Jueun Jeon, a další
Vydáno: (2020-01-01)