An empirical study of problems and evaluation of IoT malware classification label sources
With the proliferation of malware on IoT devices, research on IoT malicious code has also become more mature. Most studies use learning models to detect or classify malware. Therefore, ensuring high-quality labels for malware samples is crucial to maintaining research accuracy. Researchers typically...
Κύριοι συγγραφείς: | Tianwei Lei, Jingfeng Xue, Yong Wang, Thar Baker, Zequn Niu |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
Elsevier
2024-01-01
|
Σειρά: | Journal of King Saud University: Computer and Information Sciences |
Θέματα: | |
Διαθέσιμο Online: | http://www.sciencedirect.com/science/article/pii/S1319157823004524 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Design of Automation Environment for Analyzing Various IoT Malware
ανά: Sungwon Lee, κ.ά.
Έκδοση: (2021-01-01) -
A Study on the Digital Forensic Investigation Method of Clever Malware in IoT Devices
ανά: Dohyun Kim, κ.ά.
Έκδοση: (2020-01-01) -
Sumav: Fully automated malware labeling
ανά: Sangwon Kim, κ.ά.
Έκδοση: (2022-12-01) -
Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics
ανά: Sai Manoj Pudukotai Dinakarrao, κ.ά.
Έκδοση: (2020-01-01) -
Dynamic Analysis for IoT Malware Detection With Convolution Neural Network Model
ανά: Jueun Jeon, κ.ά.
Έκδοση: (2020-01-01)