An empirical study of problems and evaluation of IoT malware classification label sources
With the proliferation of malware on IoT devices, research on IoT malicious code has also become more mature. Most studies use learning models to detect or classify malware. Therefore, ensuring high-quality labels for malware samples is crucial to maintaining research accuracy. Researchers typically...
Auteurs principaux: | Tianwei Lei, Jingfeng Xue, Yong Wang, Thar Baker, Zequn Niu |
---|---|
Format: | Article |
Langue: | English |
Publié: |
Elsevier
2024-01-01
|
Collection: | Journal of King Saud University: Computer and Information Sciences |
Sujets: | |
Accès en ligne: | http://www.sciencedirect.com/science/article/pii/S1319157823004524 |
Documents similaires
-
Design of Automation Environment for Analyzing Various IoT Malware
par: Sungwon Lee, et autres
Publié: (2021-01-01) -
A Study on the Digital Forensic Investigation Method of Clever Malware in IoT Devices
par: Dohyun Kim, et autres
Publié: (2020-01-01) -
Sumav: Fully automated malware labeling
par: Sangwon Kim, et autres
Publié: (2022-12-01) -
Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics
par: Sai Manoj Pudukotai Dinakarrao, et autres
Publié: (2020-01-01) -
Dynamic Analysis for IoT Malware Detection With Convolution Neural Network Model
par: Jueun Jeon, et autres
Publié: (2020-01-01)