An empirical study of problems and evaluation of IoT malware classification label sources
With the proliferation of malware on IoT devices, research on IoT malicious code has also become more mature. Most studies use learning models to detect or classify malware. Therefore, ensuring high-quality labels for malware samples is crucial to maintaining research accuracy. Researchers typically...
Principais autores: | Tianwei Lei, Jingfeng Xue, Yong Wang, Thar Baker, Zequn Niu |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
Elsevier
2024-01-01
|
coleção: | Journal of King Saud University: Computer and Information Sciences |
Assuntos: | |
Acesso em linha: | http://www.sciencedirect.com/science/article/pii/S1319157823004524 |
Registros relacionados
-
Design of Automation Environment for Analyzing Various IoT Malware
por: Sungwon Lee, et al.
Publicado em: (2021-01-01) -
A Study on the Digital Forensic Investigation Method of Clever Malware in IoT Devices
por: Dohyun Kim, et al.
Publicado em: (2020-01-01) -
Sumav: Fully automated malware labeling
por: Sangwon Kim, et al.
Publicado em: (2022-12-01) -
Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics
por: Sai Manoj Pudukotai Dinakarrao, et al.
Publicado em: (2020-01-01) -
Dynamic Analysis for IoT Malware Detection With Convolution Neural Network Model
por: Jueun Jeon, et al.
Publicado em: (2020-01-01)