An empirical study of problems and evaluation of IoT malware classification label sources
With the proliferation of malware on IoT devices, research on IoT malicious code has also become more mature. Most studies use learning models to detect or classify malware. Therefore, ensuring high-quality labels for malware samples is crucial to maintaining research accuracy. Researchers typically...
Huvudupphovsmän: | Tianwei Lei, Jingfeng Xue, Yong Wang, Thar Baker, Zequn Niu |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
Elsevier
2024-01-01
|
Serie: | Journal of King Saud University: Computer and Information Sciences |
Ämnen: | |
Länkar: | http://www.sciencedirect.com/science/article/pii/S1319157823004524 |
Liknande verk
Liknande verk
-
Design of Automation Environment for Analyzing Various IoT Malware
av: Sungwon Lee, et al.
Publicerad: (2021-01-01) -
A Study on the Digital Forensic Investigation Method of Clever Malware in IoT Devices
av: Dohyun Kim, et al.
Publicerad: (2020-01-01) -
Sumav: Fully automated malware labeling
av: Sangwon Kim, et al.
Publicerad: (2022-12-01) -
Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics
av: Sai Manoj Pudukotai Dinakarrao, et al.
Publicerad: (2020-01-01) -
Dynamic Analysis for IoT Malware Detection With Convolution Neural Network Model
av: Jueun Jeon, et al.
Publicerad: (2020-01-01)