An empirical study of problems and evaluation of IoT malware classification label sources
With the proliferation of malware on IoT devices, research on IoT malicious code has also become more mature. Most studies use learning models to detect or classify malware. Therefore, ensuring high-quality labels for malware samples is crucial to maintaining research accuracy. Researchers typically...
Những tác giả chính: | Tianwei Lei, Jingfeng Xue, Yong Wang, Thar Baker, Zequn Niu |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Elsevier
2024-01-01
|
Loạt: | Journal of King Saud University: Computer and Information Sciences |
Những chủ đề: | |
Truy cập trực tuyến: | http://www.sciencedirect.com/science/article/pii/S1319157823004524 |
Những quyển sách tương tự
-
Design of Automation Environment for Analyzing Various IoT Malware
Bằng: Sungwon Lee, et al.
Được phát hành: (2021-01-01) -
A Study on the Digital Forensic Investigation Method of Clever Malware in IoT Devices
Bằng: Dohyun Kim, et al.
Được phát hành: (2020-01-01) -
Sumav: Fully automated malware labeling
Bằng: Sangwon Kim, et al.
Được phát hành: (2022-12-01) -
Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics
Bằng: Sai Manoj Pudukotai Dinakarrao, et al.
Được phát hành: (2020-01-01) -
Dynamic Analysis for IoT Malware Detection With Convolution Neural Network Model
Bằng: Jueun Jeon, et al.
Được phát hành: (2020-01-01)