Modeling transmission dynamics of measles in Nepal and its control with monitored vaccination program

Measles is one of the highly contagious human viral diseases. Despite the availability of vaccines, measles outbreak frequently occurs in many places, including Nepal, partly due to the lack of compliance with vaccination. In this study, we develop a novel transmission dynamics model to evaluate the...

Full description

Bibliographic Details
Main Authors: Anjana Pokharel, Khagendra Adhikari, Ramesh Gautam, Kedar Nath Uprety, Naveen K. Vaidya
Format: Article
Language:English
Published: AIMS Press 2022-06-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2022397?viewType=HTML
Description
Summary:Measles is one of the highly contagious human viral diseases. Despite the availability of vaccines, measles outbreak frequently occurs in many places, including Nepal, partly due to the lack of compliance with vaccination. In this study, we develop a novel transmission dynamics model to evaluate the effects of monitored vaccination programs to control and eliminate measles. We use our model, parameterized with the data from the measles outbreak in Nepal, to calculate the vaccinated reproduction number, $ R_v $, of measles in Nepal. We perform model analyses to establish the global asymptotic stability of the disease-free equilibrium point for $ R_v < 1 $ and the uniform persistence of the disease for $ R_v > 1 $. Moreover, we perform model simulations to identify monitored vaccination strategies for the successful control of measles in Nepal. Our model predicts that the monitored vaccination programs can help control the potential resurgence of the disease.
ISSN:1551-0018