Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning

Based on orbital angular momentum (OAM) properties of Laguerre–Gaussian beams LG(<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mo>ℓ</mo></mrow&...

Full description

Bibliographic Details
Main Authors: Erick Lamilla, Christian Sacarelo, Manuel S. Alvarez-Alvarado, Arturo Pazmino, Peter Iza
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/5/2755
_version_ 1827752080328097792
author Erick Lamilla
Christian Sacarelo
Manuel S. Alvarez-Alvarado
Arturo Pazmino
Peter Iza
author_facet Erick Lamilla
Christian Sacarelo
Manuel S. Alvarez-Alvarado
Arturo Pazmino
Peter Iza
author_sort Erick Lamilla
collection DOAJ
description Based on orbital angular momentum (OAM) properties of Laguerre–Gaussian beams LG(<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mo>ℓ</mo></mrow></semantics></math></inline-formula>), a robust optical encoding model for efficient data transmission applications is designed. This paper presents an optical encoding model based on an intensity profile generated by a coherent superposition of two OAM-carrying Laguerre–Gaussian modes and a machine learning detection method. In the encoding process, the intensity profile for data encoding is generated based on the selection of <i>p</i> and <i>ℓ</i> indices, while the decoding process is performed using a support vector machine (SVM) algorithm. Two different decoding models based on an SVM algorithm are tested to verify the robustness of the optical encoding model, finding a BER <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10.2</mn></mrow></semantics></math></inline-formula> dB of signal-to-noise ratio in one of the SVM models.
first_indexed 2024-03-11T07:10:42Z
format Article
id doaj.art-a9f27863b8f741fe9c5657083d7d5f08
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-11T07:10:42Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-a9f27863b8f741fe9c5657083d7d5f082023-11-17T08:39:23ZengMDPI AGSensors1424-82202023-03-01235275510.3390/s23052755Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine LearningErick Lamilla0Christian Sacarelo1Manuel S. Alvarez-Alvarado2Arturo Pazmino3Peter Iza4Escuela Superior Politécnica del Litoral, ESPOL, Departamento de Física, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090150, EcuadorEscuela Superior Politécnica del Litoral, ESPOL, Departamento de Física, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090150, EcuadorEscuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Electricidad y Computación(FIEC), Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090150, EcuadorEscuela Superior Politécnica del Litoral, ESPOL, Departamento de Física, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090150, EcuadorEscuela Superior Politécnica del Litoral, ESPOL, Departamento de Física, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090150, EcuadorBased on orbital angular momentum (OAM) properties of Laguerre–Gaussian beams LG(<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mo>ℓ</mo></mrow></semantics></math></inline-formula>), a robust optical encoding model for efficient data transmission applications is designed. This paper presents an optical encoding model based on an intensity profile generated by a coherent superposition of two OAM-carrying Laguerre–Gaussian modes and a machine learning detection method. In the encoding process, the intensity profile for data encoding is generated based on the selection of <i>p</i> and <i>ℓ</i> indices, while the decoding process is performed using a support vector machine (SVM) algorithm. Two different decoding models based on an SVM algorithm are tested to verify the robustness of the optical encoding model, finding a BER <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10.2</mn></mrow></semantics></math></inline-formula> dB of signal-to-noise ratio in one of the SVM models.https://www.mdpi.com/1424-8220/23/5/2755machine learningLG-beamsOAM-beamsoptical encoding model
spellingShingle Erick Lamilla
Christian Sacarelo
Manuel S. Alvarez-Alvarado
Arturo Pazmino
Peter Iza
Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning
Sensors
machine learning
LG-beams
OAM-beams
optical encoding model
title Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning
title_full Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning
title_fullStr Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning
title_full_unstemmed Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning
title_short Optical Encoding Model Based on Orbital Angular Momentum Powered by Machine Learning
title_sort optical encoding model based on orbital angular momentum powered by machine learning
topic machine learning
LG-beams
OAM-beams
optical encoding model
url https://www.mdpi.com/1424-8220/23/5/2755
work_keys_str_mv AT ericklamilla opticalencodingmodelbasedonorbitalangularmomentumpoweredbymachinelearning
AT christiansacarelo opticalencodingmodelbasedonorbitalangularmomentumpoweredbymachinelearning
AT manuelsalvarezalvarado opticalencodingmodelbasedonorbitalangularmomentumpoweredbymachinelearning
AT arturopazmino opticalencodingmodelbasedonorbitalangularmomentumpoweredbymachinelearning
AT peteriza opticalencodingmodelbasedonorbitalangularmomentumpoweredbymachinelearning