A Unifying Principle in the Theory of Modular Relations

The Voronoĭ summation formula is known to be equivalent to the functional equation for the square of the Riemann zeta function in case the function in question is the Mellin tranform of a suitable function. There are some other famous summation formulas which are treated as independent of the modula...

Full description

Bibliographic Details
Main Authors: Guodong Liu, Kalyan Chakraborty, Shigeru Kanemitsu
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/3/535
_version_ 1797623932775301120
author Guodong Liu
Kalyan Chakraborty
Shigeru Kanemitsu
author_facet Guodong Liu
Kalyan Chakraborty
Shigeru Kanemitsu
author_sort Guodong Liu
collection DOAJ
description The Voronoĭ summation formula is known to be equivalent to the functional equation for the square of the Riemann zeta function in case the function in question is the Mellin tranform of a suitable function. There are some other famous summation formulas which are treated as independent of the modular relation. In this paper, we shall establish a far-reaching principle which furnishes the following. Given a zeta function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi>s</mi><mo>)</mo></mrow></semantics></math></inline-formula> satisfying a suitable functional equation, one can generalize it to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Z</mi><mi>f</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in the form of an integral involving the Mellin transform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a certain suitable function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> and process it further as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Z</mi><mo>˜</mo></mover><mi>f</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Under the condition that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo></mrow></semantics></math></inline-formula> is expressed as an integral, and the order of two integrals is interchangeable, one can obtain a closed form for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Z</mi><mo>˜</mo></mover><mi>f</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Ample examples are given: the Lipschitz summation formula, Koshlyakov’s generalized Dedekind zeta function and the Plana summation formula. In the final section, we shall elucidate Hamburger’s results in light of RHBM correspondence (i.e., through Fourier–Whittaker expansion).
first_indexed 2024-03-11T09:35:47Z
format Article
id doaj.art-a9f306d3e98b4ea2bc4c96d47dde61e4
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T09:35:47Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-a9f306d3e98b4ea2bc4c96d47dde61e42023-11-16T17:20:59ZengMDPI AGMathematics2227-73902023-01-0111353510.3390/math11030535A Unifying Principle in the Theory of Modular RelationsGuodong Liu0Kalyan Chakraborty1Shigeru Kanemitsu2Department of Mathematics and Statistics, Huizhou University, Huizhou 516007, ChinaKSCSTE-Kerala School of Mathematics, Kozhikode 673571, IndiaKSCSTE-Kerala School of Mathematics, Kozhikode 673571, IndiaThe Voronoĭ summation formula is known to be equivalent to the functional equation for the square of the Riemann zeta function in case the function in question is the Mellin tranform of a suitable function. There are some other famous summation formulas which are treated as independent of the modular relation. In this paper, we shall establish a far-reaching principle which furnishes the following. Given a zeta function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><mi>s</mi><mo>)</mo></mrow></semantics></math></inline-formula> satisfying a suitable functional equation, one can generalize it to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Z</mi><mi>f</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in the form of an integral involving the Mellin transform <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a certain suitable function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> and process it further as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Z</mi><mo>˜</mo></mover><mi>f</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Under the condition that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>s</mi><mo>)</mo></mrow></semantics></math></inline-formula> is expressed as an integral, and the order of two integrals is interchangeable, one can obtain a closed form for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>Z</mi><mo>˜</mo></mover><mi>f</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Ample examples are given: the Lipschitz summation formula, Koshlyakov’s generalized Dedekind zeta function and the Plana summation formula. In the final section, we shall elucidate Hamburger’s results in light of RHBM correspondence (i.e., through Fourier–Whittaker expansion).https://www.mdpi.com/2227-7390/11/3/535summation formulasmodular relationMellin tranformRiemann zeta functionfunctional equation
spellingShingle Guodong Liu
Kalyan Chakraborty
Shigeru Kanemitsu
A Unifying Principle in the Theory of Modular Relations
Mathematics
summation formulas
modular relation
Mellin tranform
Riemann zeta function
functional equation
title A Unifying Principle in the Theory of Modular Relations
title_full A Unifying Principle in the Theory of Modular Relations
title_fullStr A Unifying Principle in the Theory of Modular Relations
title_full_unstemmed A Unifying Principle in the Theory of Modular Relations
title_short A Unifying Principle in the Theory of Modular Relations
title_sort unifying principle in the theory of modular relations
topic summation formulas
modular relation
Mellin tranform
Riemann zeta function
functional equation
url https://www.mdpi.com/2227-7390/11/3/535
work_keys_str_mv AT guodongliu aunifyingprincipleinthetheoryofmodularrelations
AT kalyanchakraborty aunifyingprincipleinthetheoryofmodularrelations
AT shigerukanemitsu aunifyingprincipleinthetheoryofmodularrelations
AT guodongliu unifyingprincipleinthetheoryofmodularrelations
AT kalyanchakraborty unifyingprincipleinthetheoryofmodularrelations
AT shigerukanemitsu unifyingprincipleinthetheoryofmodularrelations