Multimode tunable terahertz absorber based on a quarter graphene disk structure

In this research work, in order to solve the unadjustability of traditional noble metal absorbers to meet the complex application requirements in the actual electromagnetic environment, we designed a simple tunable absorber based on graphene with tunable Fermi level. The performance of the proposed...

Full description

Bibliographic Details
Main Authors: Zhibin Ye, Pinghui Wu, Hailun Wang, Shu Jiang, Meng Huang, Dongge Lei, Fei Wu
Format: Article
Language:English
Published: Elsevier 2023-05-01
Series:Results in Physics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379723002139
Description
Summary:In this research work, in order to solve the unadjustability of traditional noble metal absorbers to meet the complex application requirements in the actual electromagnetic environment, we designed a simple tunable absorber based on graphene with tunable Fermi level. The performance of the proposed absorber is theoretically simulated by the finite difference time domain (FDTD) method. The proposed absorber has two perfect absorption peaks with high efficiency of 99.51% and 99.548% in its working band (90–155 μm). We have performed an in-depth analysis of the causes of perfect absorption and focused on the tunability of the absorber. The absorption frequency can be adjusted by controlling the relaxation time and Fermi level of graphene, and the same purpose can be achieved by changing the refractive index (relative dielectric constant) of the medium. In addition, we also explored the influence of the change of the top structure parameters on the absorption performance. The proposed absorber has the ability to adapt to different electromagnetic environments. In general, it can be flexibly regulated in practical applications, which will provide new possibilities for the development of many fields such as detection and communication.
ISSN:2211-3797