Deposition of Organic-Inorganic Nanocomposite Coatings for Biomedical Applications

Polymethylmethacrylate (PMMA) is a material of choice for many biomedical coating applications. However, such applications are limited due to the toxicity of the traditional solvents used for the solution processing of PMMA coatings and composites. This problem is addressed using an isopropanol-wate...

Full description

Bibliographic Details
Main Authors: Zhengzheng Wang, Igor Zhitomirsky
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Solids
Subjects:
Online Access:https://www.mdpi.com/2673-6497/3/2/19
Description
Summary:Polymethylmethacrylate (PMMA) is a material of choice for many biomedical coating applications. However, such applications are limited due to the toxicity of the traditional solvents used for the solution processing of PMMA coatings and composites. This problem is addressed using an isopropanol-water co-solvent, which allows for the dissolution of high molecular mass PMMA and the fabrication of coatings by a dip-coating method from concentrated PMMA solutions. The use of the co-solvent offers a versatile strategy for PMMA solubilization and coating deposition, despite the insolubility of PMMA in water and isopropanol. Composite coatings are obtained, containing hydroxyapatite, silver oxide, zinc oxide, micron size silica and nanosilica. Such coatings are promising for the manufacturing of implants with enhanced biocompatibility, bioactivity and antimicrobial properties and the fabrication of biosensors. Ibuprofen, tetracycline and amoxicillin are used as model drugs for the fabrication of PMMA-drug composite coatings for drug delivery. The microstructure and composition of the coatings are analyzed. The versatile dip-coating method of this investigation provides a platform for various biomedical applications.
ISSN:2673-6497