Summary: | Recycling bioresources is the only way to sustainably meet a growing world population’s food and energy needs. One of the ways to do so is by using agro-industry wastewater to cultivate microalgae. While the industrial production of microalgae requires large volumes of water, existing agro-industry processes generate large volumes of wastewater with eutrophicating nutrients and organic carbon that must be removed before recycling the water back into the environment. Coupling these two processes can benefit the flourishing microalgal industry, which requires water, and the agro-industry, which could gain extra revenue by converting a waste stream into a bioproduct. Microalgal biomass can be used to produce energy, nutritional biomass, and specialty products. However, there are challenges to establishing stable and circular processes, from microalgae selection and adaptation to pretreating and reclaiming energy from residues. This review discusses the potential of agro-industry residues for microalgal production, with a particular interest in the composition and the use of important primary (raw) and secondary (digestate) effluents generated in large volumes: sugarcane vinasse, palm oil mill effluent, cassava processing waster, abattoir wastewater, dairy processing wastewater, and aquaculture wastewater. It also overviews recent examples of microalgae production in residues and aspects of process integration and possible products, avoiding xenobiotics and heavy metal recycling. As virtually all agro-industries have boilers emitting CO<sub>2</sub> that microalgae can use, and many industries could benefit from anaerobic digestion to reclaim energy from the effluents before microalgal cultivation, the use of gaseous effluents is also discussed in the text.
|