Studi Model Prediksi Fatalitas Korban Kecelakaan Lalu Lintas Jalan Berdasarkan Karakteristik Wilayah dengan Multi Variabel

Road safety researchers in many countries assume that population and numbers of vehicles as the most decisive variables to predict numbers of fatality by road accidents. That assumption is not accordance with conditions in Indonesian. In ASEAN, Indonesia has largest of area and population, longest r...

Full description

Bibliographic Details
Main Author: Supratman Agus
Format: Article
Language:English
Published: Universitas Diponegoro 2015-03-01
Series:Media Komunikasi Teknik Sipil
Subjects:
Online Access:http://ejournal.undip.ac.id/index.php/mkts/article/view/8427
_version_ 1818417602498658304
author Supratman Agus
author_facet Supratman Agus
author_sort Supratman Agus
collection DOAJ
description Road safety researchers in many countries assume that population and numbers of vehicles as the most decisive variables to predict numbers of fatality by road accidents. That assumption is not accordance with conditions in Indonesian. In ASEAN, Indonesia has largest of area and population, longest road infrastructure, and largest number of motor vehicles, but road victims’ fatality is low. This indicate under reporting. Tis study aimed to obtaining the predictive model of road victims’ fatality which suits Indonesia’s conditions. Three model were compared are Andreassen model, Artificial Neural Network with two variable (ANN2) and four variables (ANN4), with numbers of driving license holder and length of road as two additional variables. Model validation was performed on three cities in West Java with different categories population densities. Result of comparison and validation test using MAPE, MAE, and RMSE criteria show that the best predictions models of road victims’ fatality is ANN4. In addition, predictions of road victim numbers in Indonesia are not only influenced by population and numbers of vehicles, but also by driving license holder numbers and length of road.
first_indexed 2024-12-14T12:09:23Z
format Article
id doaj.art-aa1775b277fd4a8b9b84ce4778b54182
institution Directory Open Access Journal
issn 0854-1809
2549-6778
language English
last_indexed 2024-12-14T12:09:23Z
publishDate 2015-03-01
publisher Universitas Diponegoro
record_format Article
series Media Komunikasi Teknik Sipil
spelling doaj.art-aa1775b277fd4a8b9b84ce4778b541822022-12-21T23:01:48ZengUniversitas DiponegoroMedia Komunikasi Teknik Sipil0854-18092549-67782015-03-0119217518110.14710/mkts.v19i2.84277192Studi Model Prediksi Fatalitas Korban Kecelakaan Lalu Lintas Jalan Berdasarkan Karakteristik Wilayah dengan Multi VariabelSupratman Agus0Program Studi Teknik Sipil Universitas Pendidikan Indonesia Jl. Dr Setiabudi 207 Bandung, IndonesiaRoad safety researchers in many countries assume that population and numbers of vehicles as the most decisive variables to predict numbers of fatality by road accidents. That assumption is not accordance with conditions in Indonesian. In ASEAN, Indonesia has largest of area and population, longest road infrastructure, and largest number of motor vehicles, but road victims’ fatality is low. This indicate under reporting. Tis study aimed to obtaining the predictive model of road victims’ fatality which suits Indonesia’s conditions. Three model were compared are Andreassen model, Artificial Neural Network with two variable (ANN2) and four variables (ANN4), with numbers of driving license holder and length of road as two additional variables. Model validation was performed on three cities in West Java with different categories population densities. Result of comparison and validation test using MAPE, MAE, and RMSE criteria show that the best predictions models of road victims’ fatality is ANN4. In addition, predictions of road victim numbers in Indonesia are not only influenced by population and numbers of vehicles, but also by driving license holder numbers and length of road.http://ejournal.undip.ac.id/index.php/mkts/article/view/8427FatalityModel comparisonAndreassen modelArtificial Neural Network (ANN) model
spellingShingle Supratman Agus
Studi Model Prediksi Fatalitas Korban Kecelakaan Lalu Lintas Jalan Berdasarkan Karakteristik Wilayah dengan Multi Variabel
Media Komunikasi Teknik Sipil
Fatality
Model comparison
Andreassen model
Artificial Neural Network (ANN) model
title Studi Model Prediksi Fatalitas Korban Kecelakaan Lalu Lintas Jalan Berdasarkan Karakteristik Wilayah dengan Multi Variabel
title_full Studi Model Prediksi Fatalitas Korban Kecelakaan Lalu Lintas Jalan Berdasarkan Karakteristik Wilayah dengan Multi Variabel
title_fullStr Studi Model Prediksi Fatalitas Korban Kecelakaan Lalu Lintas Jalan Berdasarkan Karakteristik Wilayah dengan Multi Variabel
title_full_unstemmed Studi Model Prediksi Fatalitas Korban Kecelakaan Lalu Lintas Jalan Berdasarkan Karakteristik Wilayah dengan Multi Variabel
title_short Studi Model Prediksi Fatalitas Korban Kecelakaan Lalu Lintas Jalan Berdasarkan Karakteristik Wilayah dengan Multi Variabel
title_sort studi model prediksi fatalitas korban kecelakaan lalu lintas jalan berdasarkan karakteristik wilayah dengan multi variabel
topic Fatality
Model comparison
Andreassen model
Artificial Neural Network (ANN) model
url http://ejournal.undip.ac.id/index.php/mkts/article/view/8427
work_keys_str_mv AT supratmanagus studimodelprediksifatalitaskorbankecelakaanlalulintasjalanberdasarkankarakteristikwilayahdenganmultivariabel